BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20723064)

  • 1. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis.
    Spear SF; Balkenhol N; Fortin MJ; McRae BH; Scribner K
    Mol Ecol; 2010 Sep; 19(17):3576-91. PubMed ID: 20723064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape genetics of high mountain frog metapopulations.
    Murphy MA; Dezzani R; Pilliod DS; Storfer A
    Mol Ecol; 2010 Sep; 19(17):3634-49. PubMed ID: 20723055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do landscape processes predict phylogeographic patterns in the wood frog?
    Lee-Yaw JA; Davidson A; McRae BH; Green DM
    Mol Ecol; 2009 May; 18(9):1863-74. PubMed ID: 19302465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of computer simulations in landscape genetics.
    Epperson BK; McRae BH; Scribner K; Cushman SA; Rosenberg MS; Fortin MJ; James PM; Murphy M; Manel S; Legendre P; Dale MR
    Mol Ecol; 2010 Sep; 19(17):3549-64. PubMed ID: 20618894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spurious correlations and inference in landscape genetics.
    Cushman SA; Landguth EL
    Mol Ecol; 2010 Sep; 19(17):3592-602. PubMed ID: 20618896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape.
    Goldberg CS; Waits LP
    Mol Ecol; 2010 Sep; 19(17):3650-63. PubMed ID: 20723062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considering spatial and temporal scale in landscape-genetic studies of gene flow.
    Anderson CD; Epperson BK; Fortin MJ; Holderegger R; James PM; Rosenberg MS; Scribner KT; Spear S
    Mol Ecol; 2010 Sep; 19(17):3565-75. PubMed ID: 20723051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a genetic network to parameterize a landscape resistance surface for fishers, Martes pennanti.
    Garroway CJ; Bowman J; Wilson PJ
    Mol Ecol; 2011 Oct; 20(19):3978-88. PubMed ID: 21883589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers.
    Knowles LL; Alvarado-Serrano DF
    Mol Ecol; 2010 Sep; 19(17):3727-45. PubMed ID: 20723059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach.
    Braunisch V; Segelbacher G; Hirzel AH
    Mol Ecol; 2010 Sep; 19(17):3664-78. PubMed ID: 20723058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grains of connectivity: analysis at multiple spatial scales in landscape genetics.
    Galpern P; Manseau M; Wilson P
    Mol Ecol; 2012 Aug; 21(16):3996-4009. PubMed ID: 22724394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cost surface parameterization on landscape resistance estimates.
    Koen EL; Bowman J; Walpole AA
    Mol Ecol Resour; 2012 Jul; 12(4):686-96. PubMed ID: 22353473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferences on pathogenic fungus population structures from microsatellite data: new insights from spatial genetics approaches.
    Rieux A; Halkett F; de Lapeyre de Bellaire L; Zapater MF; Rousset F; Ravigne V; Carlier J
    Mol Ecol; 2011 Apr; 20(8):1661-74. PubMed ID: 21410575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity.
    Keyghobadi N; Roland J; Strobeck C
    Mol Ecol; 2005 Jun; 14(7):1897-909. PubMed ID: 15910314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks.
    Dyer RJ; Nason JD; Garrick RC
    Mol Ecol; 2010 Sep; 19(17):3746-59. PubMed ID: 20723052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.
    Cushman SA; McKelvey KS; Hayden J; Schwartz MK
    Am Nat; 2006 Oct; 168(4):486-99. PubMed ID: 17004220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).
    Bruggeman DJ; Wiegand T; Fernández N
    Mol Ecol; 2010 Sep; 19(17):3679-91. PubMed ID: 20618895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring landscape effects on dispersal from genetic distances: how far can we go?
    Jaquiéry J; Broquet T; Hirzel AH; Yearsley J; Perrin N
    Mol Ecol; 2011 Feb; 20(4):692-705. PubMed ID: 21175906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment.
    McCairns RJ; Bernatchez L
    Mol Ecol; 2008 Sep; 17(17):3901-16. PubMed ID: 18662229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations.
    Worthington Wilmer J; Elkin C; Wilcox C; Murray L; Niejalke D; Possingham H
    Mol Ecol; 2008 Aug; 17(16):3733-51. PubMed ID: 18643884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.