BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 2072385)

  • 1. Contributions of secondary active transport processes to membrane potentials.
    Gordon LG; Macknight AD
    J Membr Biol; 1991 Mar; 120(2):141-54. PubMed ID: 2072385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps.
    Lewis SA; Wills NK; Eaton DC
    J Membr Biol; 1978 Jun; 41(2):117-48. PubMed ID: 671523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of membrane potential equations to tight epithelia.
    Gordon LG; Macknight AD
    J Membr Biol; 1991 Mar; 120(2):155-63. PubMed ID: 2072386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Influence of sodium pump and Na(+), K(+), CL(-)-cotransport on the resting membrane potential of somatic muscle cells of the earthworm Lumbricus terrestris].
    Volkov EM; Nurullin LF; Nikol'skiĭ EE
    Ross Fiziol Zh Im I M Sechenova; 2001 Sep; 87(9):1153-60. PubMed ID: 11763527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of (Na + K + 2 Cl) cotransport and the Na/K pump in cultured chick cardiac myocytes.
    Liu S; Jacob R; Piwnica-Worms D; Lieberman M
    Mol Cell Biochem; 1989 Sep; 89(2):147-50. PubMed ID: 2811863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials.
    Sjodin RA
    Soc Gen Physiol Ser; 1984; 38():105-27. PubMed ID: 6320455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressin alters the mechanism of apical Cl- entry from Na+:Cl- to Na+:K+:2Cl- cotransport in mouse medullary thick ascending limb.
    Sun A; Grossman EB; Lombardi M; Hebert SC
    J Membr Biol; 1991 Feb; 120(1):83-94. PubMed ID: 2020021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical effects of transmembrane electroneutral exchange on membrane potential.
    Jacob R; Piwnica-Worms D; Horres CR; Lieberman M
    J Gen Physiol; 1984 Jan; 83(1):47-56. PubMed ID: 6319544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic fluxes and permeabilities of cell membranes in rat liver.
    Claret M; Mazet JL
    J Physiol; 1972 Jun; 223(2):279-95. PubMed ID: 5039275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of potassium in Chara australis: II. Kinetics of a symport with sodium.
    McCulloch SR; Beilby MJ; Walker NA
    J Membr Biol; 1990 May; 115(2):129-43. PubMed ID: 2355393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of chloride transport in the control of the membrane potential in skeletal muscle--theory and experiment.
    Gallaher J; Bier M; Siegenbeek van Heukelom J
    Biophys Chem; 2009 Jul; 143(1-2):18-25. PubMed ID: 19361905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of ion transport across the choroid plexus.
    Wright EM
    J Physiol; 1972 Oct; 226(2):545-71. PubMed ID: 4538945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone.
    Gorman AL; Marmor MF
    J Physiol; 1970 Nov; 210(4):897-917. PubMed ID: 5501490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer evaluation of equations for predicting the potential across biological membranes.
    Rosenberg SA
    Biophys J; 1969 Apr; 9(4):500-9. PubMed ID: 5778183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride cotransport in the membrane of earthworm body wall muscles.
    Volkov EM; Nurullin LF; Nikolsky E; Krůsek J; Vyskocil F
    Physiol Res; 2003; 52(5):587-92. PubMed ID: 14535834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a Na+/K+/Cl- cotransport system in basolateral membrane vesicles from the rabbit parotid.
    Turner RJ; George JN; Baum BJ
    J Membr Biol; 1986; 94(2):143-52. PubMed ID: 3560199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the membrane potential in smooth muscle cells of the guinea-pig's taenia coli by the Goldman equation.
    Casteels R
    J Physiol; 1969 Nov; 205(1):193-208. PubMed ID: 5354999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane potential and permeabilities of the L cell membrane to Na, K and chloride.
    Lamb JF; MacKinnon MG
    J Physiol; 1971 Mar; 213(3):683-9. PubMed ID: 5102533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Na+/Cl-, Na+/HCO3- and Na+/K+/2Cl- co-transporter activity in corneal endothelial cell plasma membrane vesicles.
    Lane JR; Wigham CG; Hodson SA
    Biochim Biophys Acta; 1997 Sep; 1328(2):237-42. PubMed ID: 9315620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.