BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20723900)

  • 1. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion.
    Nguyen CM; Levy AJ
    J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
    Cilla M; Peña E; Martínez MA
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial stress in biomechanical models of atherosclerotic plaques.
    Speelman L; Akyildiz AC; den Adel B; Wentzel JJ; van der Steen AF; Virmani R; van der Weerd L; Jukema JW; Poelmann RE; van Brummelen EH; Gijsen FJ
    J Biomech; 2011 Sep; 44(13):2376-82. PubMed ID: 21782179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of axial image resolution on atherosclerotic plaque stress computations.
    Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and biomechanical aspects of vulnerable coronary plaque.
    Finet G; Ohayon J; Rioufol G; Lefloch S; Tracqui P; Dubreuil O; Tabib A
    Arch Mal Coeur Vaiss; 2007; 100(6-7):547-53. PubMed ID: 17893637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model.
    Wong KK; Thavornpattanapong P; Cheung SC; Sun Z; Tu J
    BMC Cardiovasc Disord; 2012 Feb; 12():7. PubMed ID: 22336469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models.
    Dolla WJ; House JA; Marso SP
    Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
    Gao H; Long Q
    J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications.
    Slager CJ; Wentzel JJ; Gijsen FJ; Thury A; van der Wal AC; Schaar JA; Serruys PW
    Nat Clin Pract Cardiovasc Med; 2005 Sep; 2(9):456-64. PubMed ID: 16265586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation.
    Wenk JF; Papadopoulos P; Zohdi TI
    J Biomech Eng; 2010 Sep; 132(9):091011. PubMed ID: 20815645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cap buckling as a potential mechanism of atherosclerotic plaque vulnerability.
    Abdelali M; Reiter S; Mongrain R; Bertrand M; L'Allier PL; Kritikou EA; Tardif JC
    J Mech Behav Biomed Mater; 2014 Apr; 32():210-224. PubMed ID: 24491969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics of ulcerated plaques: before and after.
    Cummins M; Rossmann JS
    J Biomech Eng; 2010 Oct; 132(10):104503. PubMed ID: 20887021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical, biological and structural characterization of human atherosclerotic femoral plaque tissue.
    Cunnane EM; Mulvihill JJ; Barrett HE; Healy DA; Kavanagh EG; Walsh SR; Walsh MT
    Acta Biomater; 2015 Jan; 11():295-303. PubMed ID: 25242646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models.
    Cardoso L; Kelly-Arnold A; Maldonado N; Laudier D; Weinbaum S
    J Biomech; 2014 Mar; 47(4):870-7. PubMed ID: 24503048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps.
    Vengrenyuk Y; Cardoso L; Weinbaum S
    Mol Cell Biomech; 2008 Mar; 5(1):37-47. PubMed ID: 18524245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long time evolution of atherosclerotic plaques.
    Bulelzai MA; Dubbeldam JL
    J Theor Biol; 2012 Mar; 297():1-10. PubMed ID: 22142625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.