These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20723900)

  • 21. Carotid atherosclerosis. Immunocytochemical analysis of the vascular and cellular composition in endarterectomies.
    Milei J; Parodi JC; Fernandez Alonso G; Barone A; Beigelman R; Ferreira LM; Arrigoni G; Matturri L
    Cardiologia; 1996 Jun; 41(6):535-42. PubMed ID: 8766416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical response of a calcified plaque model to fluid shear force.
    Lin TC; Tintut Y; Lyman A; Mack W; Demer LL; Hsiai TK
    Ann Biomed Eng; 2006 Oct; 34(10):1535-41. PubMed ID: 17006755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis.
    Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP
    J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries.
    Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of distal thickening and stiffening of plaque cap on arterial wall mechanics.
    Chhai P; Rhee K
    Med Biol Eng Comput; 2018 Nov; 56(11):2003-2013. PubMed ID: 29736635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models.
    Kock SA; Nygaard JV; Eldrup N; Fründ ET; Klaerke A; Paaske WP; Falk E; Yong Kim W
    J Biomech; 2008; 41(8):1651-8. PubMed ID: 18485351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability.
    Hoshino T; Chow LA; Hsu JJ; Perlowski AA; Abedin M; Tobis J; Tintut Y; Mal AK; Klug WS; Demer LL
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H802-10. PubMed ID: 19542489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test.
    Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM
    Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue and plaque rupture in myocardial infarction.
    Versluis A; Bank AJ; Douglas WH
    J Biomech; 2006; 39(2):339-47. PubMed ID: 16321636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI.
    Li ZY; Howarth S; Trivedi RA; U-King-Im JM; Graves MJ; Brown A; Wang L; Gillard JH
    J Biomech; 2006; 39(14):2611-22. PubMed ID: 16256124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of residual stress on peak cap stress in arteries.
    Vandiver R
    Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of mechanical properties and atherosclerotic artery size on biomechanical plaque disruption - mouse vs. human.
    Riou LM; Broisat A; Ghezzi C; Finet G; Rioufol G; Gharib AM; Pettigrew RI; Ohayon J
    J Biomech; 2014 Mar; 47(4):765-72. PubMed ID: 24491495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture.
    Cardoso L; Weinbaum S
    Adv Exp Med Biol; 2018; 1097():129-155. PubMed ID: 30315543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue crack propagation analysis of plaque rupture.
    Pei X; Wu B; Li ZY
    J Biomech Eng; 2013 Oct; 135(10):101003-9. PubMed ID: 23897295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why do plaques rupture?
    Falk E
    Circulation; 1992 Dec; 86(6 Suppl):III30-42. PubMed ID: 1424049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical analysis of the cooling effect of blood over inflamed atherosclerotic plaque.
    Kim T; Ley O
    J Biomech Eng; 2008 Jun; 130(3):031013. PubMed ID: 18532862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.
    Jansen I; Cahalane R; Hengst R; Akyildiz A; Farrell E; Gijsen F; Aikawa E; van der Heiden K; Wissing T
    Basic Res Cardiol; 2024 Apr; 119(2):193-213. PubMed ID: 38329498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of necrotic cores in atherosclerotic plaque.
    Fok PW
    Math Med Biol; 2012 Dec; 29(4):301-27. PubMed ID: 21908792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.
    Pazos V; Mongrain R; Tardif JC
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1520-8. PubMed ID: 20172784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.