These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20724046)

  • 21. Direct measurement of dissolved N₂ and denitrification along a subtropical river-estuary gradient, China.
    Wu J; Chen N; Hong H; Lu T; Wang L; Chen Z
    Mar Pollut Bull; 2013 Jan; 66(1-2):125-34. PubMed ID: 23168233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. River water infiltration enhances denitrification efficiency in riparian groundwater.
    Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH
    Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary.
    Kim H; Bae HS; Reddy KR; Ogram A
    Water Res; 2016 Dec; 106():51-61. PubMed ID: 27697684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons.
    Ducey TF; Shriner AD; Hunt PG
    J Environ Qual; 2011; 40(2):610-9. PubMed ID: 21520768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal Characterization of San Francisco Bay Denitrifying Communities: a Comparison of nirK and nirS Diversity and Abundance.
    Lee JA; Francis CA
    Microb Ecol; 2017 Feb; 73(2):271-284. PubMed ID: 27709247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative responses of potential nitrification and denitrification rates to the size of microbial communities in rice paddy soils.
    Zhang Y; Ji G
    Chemosphere; 2018 Nov; 211():970-977. PubMed ID: 30119028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implication of two in-stream processes in the fate of nutrients discharged by sewage system into a temporary river.
    David A; Perrin JL; Rosain D; Rodier C; Picot B; Tournoud MG
    Environ Monit Assess; 2011 Oct; 181(1-4):491-507. PubMed ID: 21267647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of continuous monitoring to assess stream nitrate flux and transformation patterns.
    Jones C; Kim SW; Schilling K
    Environ Monit Assess; 2017 Jan; 189(1):35. PubMed ID: 28013474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial community shifts evaluation in the sediments of Puyang River and its nitrogen removal capabilities exploration by resuscitation promoting factor.
    Su X; Xue B; Wang Y; Hashmi MZ; Lin H; Chen J; Mei R; Wang Z; Sun F
    Ecotoxicol Environ Saf; 2019 Sep; 179():188-197. PubMed ID: 31048215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.
    Hallin S; Hellman M; Choudhury MI; Ecke F
    Water Res; 2015 Nov; 85():377-83. PubMed ID: 26360231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary.
    Domangue RJ; Mortazavi B
    Environ Pollut; 2018 Jul; 238():599-606. PubMed ID: 29609171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of PAHs Pollution on the Community Structure of Denitrifiers in a Typical Oilfield].
    Yao YH; Wang MX; Zuo XH; Li ZL; Luo F; Zhou ZF
    Huan Jing Ke Xue; 2016 Dec; 37(12):4750-4759. PubMed ID: 29965317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrate sources and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics.
    Yang P; Wang Y; Wu X; Chang L; Ham B; Song L; Groves C
    Environ Pollut; 2020 Oct; 265(Pt B):114835. PubMed ID: 32540593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate addition promotes the nitrogen cycling processes under the co-contaminated tetrabromobisphenol A and copper condition in river sediment.
    Wang L; Li Y; Fan C; Wang P; Niu L; Wang L
    Environ Pollut; 2019 Aug; 251():659-667. PubMed ID: 31108299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seeking the hotspots of nitrogen removal: A comparison of sediment denitrification rate and denitrifier abundance among wetland types with different hydrological conditions.
    Deng D; Pan Y; Liu G; Liu W; Ma L
    Sci Total Environ; 2020 Oct; 737():140253. PubMed ID: 32783851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions.
    Sánchez C; Minamisawa K
    FEMS Microbiol Lett; 2018 Mar; 365(5):. PubMed ID: 29361081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Distribution Characteristics of Nitrifiers and Denitrifiers in the River Sediments of Tongling City].
    Cheng JH; Dou ZY; Sun QY
    Huan Jing Ke Xue; 2016 Apr; 37(4):1362-70. PubMed ID: 27548957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China.
    Li F; Li M; Shi W; Li H; Sun Z; Gao Z
    Can J Microbiol; 2017 Aug; 63(8):708-718. PubMed ID: 28414921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shifts of the nirS and nirK denitrifiers in different land use types and seasons in the Sanjiang Plain, China.
    Wang C; Li J; Wu Y; Song Y; Liu R; Cao Z; Cui Y
    J Basic Microbiol; 2019 Oct; 59(10):1040-1048. PubMed ID: 31469176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen removal capacity of the river network in a high nitrogen loading region.
    Zhao Y; Xia Y; Ti C; Shan J; Li B; Xia L; Yan X
    Environ Sci Technol; 2015 Feb; 49(3):1427-35. PubMed ID: 25579626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.