These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 20724047)

  • 1. Occurrence of monoethylmercury in the Florida Everglades: identification and verification.
    Mao Y; Yin Y; Li Y; Liu G; Feng X; Jiang G; Cai Y
    Environ Pollut; 2010 Nov; 158(11):3378-84. PubMed ID: 20724047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating uptake and translocation of mercury species by sawgrass ( Cladium jamaicense ) using a stable isotope tracer technique.
    Mao Y; Li Y; Richards J; Cai Y
    Environ Sci Technol; 2013 Sep; 47(17):9678-84. PubMed ID: 23885899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades.
    Li Y; Mao Y; Liu G; Tachiev G; Roelant D; Feng X; Cai Y
    Environ Sci Technol; 2010 Sep; 44(17):6661-6. PubMed ID: 20701294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass ( Cladium jamaicense) in the Florida Everglades Using a Multi-isotope Technique.
    Meng B; Li Y; Cui W; Jiang P; Liu G; Wang Y; Richards J; Feng X; Cai Y
    Environ Sci Technol; 2018 Mar; 52(6):3384-3391. PubMed ID: 29466662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylated arsenic, antimony and tin species in soils.
    Duester L; Diaz-Bone RA; Kösters J; Hirner AV
    J Environ Monit; 2005 Dec; 7(12):1186-93. PubMed ID: 16307070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper desorption in flooded agricultural soils and toxicity to the Florida apple snail (Pomacea paludosa): implications in Everglades restoration.
    Hoang TC; Rogevich EC; Rand GM; Gardinali PR; Frakes RA; Bargar TA
    Environ Pollut; 2008 Jul; 154(2):338-47. PubMed ID: 18068282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temperature and soil moisture on methyl halide and chloroform fluxes from drained peatland pasture soils.
    Khan MA; Whelan ME; Rhew RC
    J Environ Monit; 2012 Jan; 14(1):241-9. PubMed ID: 22064943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous speciation of monomethylmercury and monoethylmercury by aqueous phenylation and purge-and-trap preconcentration followed by atomic spectrometry detection.
    Mao Y; Liu G; Meichel G; Cai Y; Jiang G
    Anal Chem; 2008 Sep; 80(18):7163-8. PubMed ID: 18690700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades.
    He D; Simoneit BRT; Jara B; Jaffé R
    Chemosphere; 2015 Jan; 119():258-266. PubMed ID: 25033241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades.
    Zhu Y; Gu B; Irick DL; Ewe S; Li Y; Ross MS; Ma LQ
    Environ Pollut; 2014 Jan; 184():313-9. PubMed ID: 24080244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic labeling strategy with 204Hg-isotopic methylmercurithiosalicylate for absolute peptide and protein quantification.
    Xu M; Yan X; Xie Q; Yang L; Wang Q
    Anal Chem; 2010 Mar; 82(5):1616-20. PubMed ID: 20143794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat.
    Nagy KL; Manceau A; Gasper JD; Ryan JN; Aiken GR
    Environ Sci Technol; 2011 Sep; 45(17):7298-306. PubMed ID: 21809860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A screening level probabilistic risk assessment of mercury in Florida Everglades food webs.
    Duvall SE; Barron MG
    Ecotoxicol Environ Saf; 2000 Nov; 47(3):298-305. PubMed ID: 11139184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.
    Gao M; Simoneit BR; Gantar M; Jaffé R
    Chemosphere; 2007 Dec; 70(2):224-36. PubMed ID: 17688908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador.
    Mainville N; Webb J; Lucotte M; Davidson R; Betancourt O; Cueva E; Mergler D
    Sci Total Environ; 2006 Sep; 368(1):88-98. PubMed ID: 16499953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.
    Lu XQ; Maie N; Hanna JV; Childers DL; Jaffé R
    Water Res; 2003 Jun; 37(11):2599-606. PubMed ID: 12753837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing sources of sulfur in the Florida Everglades.
    Bates AL; Orem WH; Harvey JW; Spiker EC
    J Environ Qual; 2002; 31(1):287-99. PubMed ID: 11837434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.