These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20724136)

  • 21. Transient Brewster angle reflectometry of spiropyran monolayers.
    Gorelik S; Hongyan S; Lear MJ; Hobley J
    Photochem Photobiol Sci; 2010 Feb; 9(2):141-51. PubMed ID: 20126787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanoparticles for controlled release.
    Chen S; Jiang F; Cao Z; Wang G; Dang ZM
    Chem Commun (Camb); 2015 Aug; 51(63):12633-6. PubMed ID: 26160558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of spiropyran-based electrochemical sensor via simultaneous photochemical and target-activatable electron transfer.
    Tao J; Li Y; Zhao P; Li J; Duan Y; Zhao W; Yang R
    Biosens Bioelectron; 2014 Dec; 62():151-7. PubMed ID: 24997369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor.
    Shiraishi Y; Sumiya S; Hirai T
    Chem Commun (Camb); 2011 May; 47(17):4953-5. PubMed ID: 21431213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor.
    Shiraishi Y; Adachi K; Itoh M; Hirai T
    Org Lett; 2009 Aug; 11(15):3482-5. PubMed ID: 19719191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spiropyran-based optical approaches for mercury ion sensing: improving sensitivity and selectivity via cooperative ligation interactions using cysteine.
    Shao N; Gao X; Wang H; Yang R; Chan W
    Anal Chim Acta; 2009 Nov; 655(1-2):1-7. PubMed ID: 19925910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spiropyran main-chain conjugated polymers.
    Sommer M; Komber H
    Macromol Rapid Commun; 2013 Jan; 34(1):57-62. PubMed ID: 23169241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Realizing the concept of a scalable artificial iris with self-regulating capability by reversible photoreaction of spiropyran dyes.
    Na JH; Park SC; Sohn Y; Lee SD
    Biomaterials; 2013 Apr; 34(13):3159-64. PubMed ID: 23395266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructured optical fibers and live cells: a water-soluble, photochromic zinc sensor.
    Heng S; McDevitt CA; Stubing DB; Whittall JJ; Thompson JG; Engler TK; Abell AD; Monro TM
    Biomacromolecules; 2013 Oct; 14(10):3376-9. PubMed ID: 23980997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J; Sun X; Lee ML
    Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy scavenging for long-term deployable wireless sensor networks.
    Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoswitchable ratchet surface topographies based on self-protonating spiropyran-NIPAAM hydrogels.
    Stumpel JE; Ziółkowski B; Florea L; Diamond D; Broer DJ; Schenning AP
    ACS Appl Mater Interfaces; 2014 May; 6(10):7268-74. PubMed ID: 24813057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoswitched DNA-binding of a photochromic spiropyran.
    Andersson J; Li S; Lincoln P; Andréasson J
    J Am Chem Soc; 2008 Sep; 130(36):11836-7. PubMed ID: 18698779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices.
    Hiratsuka A; Muguruma H; Lee KH; Karube I
    Biosens Bioelectron; 2004 Jul; 19(12):1667-72. PubMed ID: 15142601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing the photoinduced switching process of a nitrospiropyran self-assembled monolayer using in situ sum frequency generation spectroscopy.
    Darwish TA; Tong Y; James M; Hanley TL; Peng Q; Ye S
    Langmuir; 2012 Oct; 28(39):13852-60. PubMed ID: 22937910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative.
    Shao N; Zhang Y; Cheung S; Yang R; Chan W; Mo T; Li K; Liu F
    Anal Chem; 2005 Nov; 77(22):7294-303. PubMed ID: 16285678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementing conventional logic unconventionally: photochromic molecular populations as registers and logic gates.
    Chaplin JC; Russell NA; Krasnogor N
    Biosystems; 2012 Jul; 109(1):35-51. PubMed ID: 22240019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo- and pH-tunable multicolor fluorescent nanoparticle-based spiropyran- and BODIPY-conjugated polymer with graphene oxide.
    Sharker SM; Jeong CJ; Kim SM; Lee JE; Jeong JH; In I; Lee H; Park SY
    Chem Asian J; 2014 Oct; 9(10):2921-7. PubMed ID: 25056486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of a photochromic spiropyran with liposome model membranes.
    Jonsson F; Beke-Somfai T; Andréasson J; Nordén B
    Langmuir; 2013 Feb; 29(7):2099-103. PubMed ID: 23379890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible photodynamic chloride-selective sensor based on photochromic spiropyran.
    Xie X; Mistlberger G; Bakker E
    J Am Chem Soc; 2012 Oct; 134(41):16929-32. PubMed ID: 23036043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.