These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Campbell CT Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711 [TBL] [Abstract][Full Text] [Related]
3. Trends in Adhesion Energies of Metal Nanoparticles on Oxide Surfaces: Understanding Support Effects in Catalysis and Nanotechnology. Hemmingson SL; Campbell CT ACS Nano; 2017 Feb; 11(2):1196-1203. PubMed ID: 28045491 [TBL] [Abstract][Full Text] [Related]
4. The effect of size-dependent nanoparticle energetics on catalyst sintering. Campbell CT; Parker SC; Starr DE Science; 2002 Oct; 298(5594):811-4. PubMed ID: 12399586 [TBL] [Abstract][Full Text] [Related]
5. Destruction of SO2 on Au and Cu nanoparticles dispersed on MgO(100) and CeO2(111). Rodriguez JA; Liu P; Pérez M; Liu G; Hrbek J J Phys Chem A; 2010 Mar; 114(11):3802-10. PubMed ID: 19634883 [TBL] [Abstract][Full Text] [Related]
6. Density functional studies of model cerium oxide nanoparticles. Loschen C; Migani A; Bromley ST; Illas F; Neyman KM Phys Chem Chem Phys; 2008 Oct; 10(37):5730-8. PubMed ID: 18956108 [TBL] [Abstract][Full Text] [Related]
7. Influence of reduction conditions on H2 adsorption in high-surface Rh/CeO2 catalysts as deduced by volumetry, calorimetry, and 1H NMR techniques. Belzunegui JP; Sanz J; Guil JM J Phys Chem B; 2005 Oct; 109(41):19390-6. PubMed ID: 16853504 [TBL] [Abstract][Full Text] [Related]
8. Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Li Z; Sahle-Demessie E; Hassan AA; Sorial GA Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395 [TBL] [Abstract][Full Text] [Related]
9. CO adsorption on Ag(100) and Ag/MgO(100). Qin C; Sremaniak LS; Whitten JL J Phys Chem B; 2006 Jun; 110(23):11272-6. PubMed ID: 16771396 [TBL] [Abstract][Full Text] [Related]
10. Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry. Flores-Camacho JM; Fischer-Wolfarth JH; Peter M; Campbell CT; Schauermann S; Freund HJ Phys Chem Chem Phys; 2011 Oct; 13(37):16800-10. PubMed ID: 21858366 [TBL] [Abstract][Full Text] [Related]
11. Engineering Pt in ceria for a maximum metal-support interaction in catalysis. Yeung CM; Yu KM; Fu QJ; Thompsett D; Petch MI; Tsang SC J Am Chem Soc; 2005 Dec; 127(51):18010-1. PubMed ID: 16366545 [TBL] [Abstract][Full Text] [Related]
12. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Campbell CT; Sellers JR Faraday Discuss; 2013; 162():9-30. PubMed ID: 24015573 [TBL] [Abstract][Full Text] [Related]
14. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface. Nolan M J Chem Phys; 2012 Apr; 136(13):134703. PubMed ID: 22482576 [TBL] [Abstract][Full Text] [Related]
15. Silver nanoparticles supported on CeO2-SBA-15 by microwave irradiation possess metal-support interactions and enhanced catalytic activity. Qian X; Kuwahara Y; Mori K; Yamashita H Chemistry; 2014 Nov; 20(48):15746-52. PubMed ID: 25336086 [TBL] [Abstract][Full Text] [Related]
16. Charge transfers at metal/oxide interfaces: a DFT study of formation of K delta+ and Au delta- species on MgO/Ag(100) ultra-thin films from deposition of neutral atoms. Giordano L; Pacchioni G Phys Chem Chem Phys; 2006 Jul; 8(28):3335-41. PubMed ID: 16835682 [TBL] [Abstract][Full Text] [Related]
17. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897 [TBL] [Abstract][Full Text] [Related]
18. XPS and 1H NMR study of thermally stabilized Rh/CeO2 catalysts submitted to reduction/oxidation treatments. Force C; Roman E; Guil JM; Sanz J Langmuir; 2007 Apr; 23(8):4569-74. PubMed ID: 17355155 [TBL] [Abstract][Full Text] [Related]
19. New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. Carlsson A; Puig-Molina A; Janssens TV J Phys Chem B; 2006 Mar; 110(11):5286-93. PubMed ID: 16539459 [TBL] [Abstract][Full Text] [Related]
20. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. Glaspell G; Fuoco L; El-Shall MS J Phys Chem B; 2005 Sep; 109(37):17350-5. PubMed ID: 16853217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]