These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. In-sample and out-of-sample model selection and error estimation for support vector machines. Anguita D; Ghio A; Oneto L; Ridella S IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1390-406. PubMed ID: 24807923 [TBL] [Abstract][Full Text] [Related]
63. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM. Gu B; Sheng VS; Tay KY; Romano W; Li S IEEE Trans Pattern Anal Mach Intell; 2017 Jun; 39(6):1103-1121. PubMed ID: 27295653 [TBL] [Abstract][Full Text] [Related]
64. Efficient optimization of performance measures by classifier adaptation. Li N; Tsang IW; Zhou ZH IEEE Trans Pattern Anal Mach Intell; 2013 Jun; 35(6):1370-82. PubMed ID: 22868653 [TBL] [Abstract][Full Text] [Related]
65. Support vector machine with adaptive parameters in financial time series forecasting. Cao LJ; Tay FH IEEE Trans Neural Netw; 2003; 14(6):1506-18. PubMed ID: 18244595 [TBL] [Abstract][Full Text] [Related]
66. Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation. Geebelen D; Suykens JA; Vandewalle J IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):682-8. PubMed ID: 24805052 [TBL] [Abstract][Full Text] [Related]
67. The generalization error of the symmetric and scaled support vector machines. Feng J; Williams P IEEE Trans Neural Netw; 2001; 12(5):1255-60. PubMed ID: 18249953 [TBL] [Abstract][Full Text] [Related]
68. Development and evaluation of cost-sensitive universum-SVM. Dhar S; Cherkassky V IEEE Trans Cybern; 2015 Apr; 45(4):806-18. PubMed ID: 25265638 [TBL] [Abstract][Full Text] [Related]
69. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets. Shi Y; Chung FL; Wang S IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2005-18. PubMed ID: 25376045 [TBL] [Abstract][Full Text] [Related]
70. A digital architecture for support vector machines: theory, algorithm, and FPGA implementation. Anguita D; Boni A; Ridella S IEEE Trans Neural Netw; 2003; 14(5):993-1009. PubMed ID: 18244555 [TBL] [Abstract][Full Text] [Related]
71. A divide-and-combine method for large scale nonparallel support vector machines. Tian Y; Ju X; Shi Y Neural Netw; 2016 Mar; 75():12-21. PubMed ID: 26690682 [TBL] [Abstract][Full Text] [Related]
72. Feasibility and finite convergence analysis for accurate on-line ν-support vector machine. Bin Gu ; Sheng VS IEEE Trans Neural Netw Learn Syst; 2013 Aug; 24(8):1304-15. PubMed ID: 24808569 [TBL] [Abstract][Full Text] [Related]