These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20725184)

  • 1. Self-amplified optical pattern-recognition technique.
    Liu HK
    Appl Opt; 1992 May; 31(14):2568-75. PubMed ID: 20725184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photorefractive beam-steering system that uses energy transfer in a BaTiO(3) crystal for a fiber-array interconnect.
    Mathey P; Mercier R; Pauliat G; Roosen G; Gravey P
    Appl Opt; 1995 Dec; 34(35):8220-9. PubMed ID: 21068939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speckle-free image amplification by two-wave coupling in a photorefractive crystal.
    Kawata Y; Kawata S
    Appl Opt; 1993 Feb; 32(5):730-6. PubMed ID: 20802747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical amplification of diffraction-free beams by photorefractive two-wave mixing and its application to laser Doppler velocimetry.
    Ozkul C; Leroux S; Anthore N; Amara MK; Rasset S
    Appl Opt; 1995 Aug; 34(24):5485-91. PubMed ID: 21060370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis.
    Huignard JP; Marrakehi A
    Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving and analysis of micro-objects by digital holographic microscope in microfluidics.
    Merola F; Miccio L; Paturzo M; Finizio A; Grilli S; Ferraro P
    Opt Lett; 2011 Aug; 36(16):3079-81. PubMed ID: 21847166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-gain, low-noise signal beam amplification in photorefractive BaTiO(3).
    Joseph J; Pillai PK; Singh K
    Appl Opt; 1991 Aug; 30(23):3315-8. PubMed ID: 20706395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, construction, and performance of a real-time holographic refractometry prototype for liquid analysis.
    Barbosa EA; Silva DM; Preto AO; Verzini R
    Rev Sci Instrum; 2011 Jan; 82(1):013103. PubMed ID: 21280812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-beam data encoding using a holographic angular multiplexing technique.
    Jia W; Chen Z; Wen FJ; Zhou C; Chow YT; Chung PS
    Appl Opt; 2011 Dec; 50(34):H30-5. PubMed ID: 22193021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object motion compensation by speckle reference beam holography.
    Waters JP
    Appl Opt; 1972 Mar; 11(3):630-6. PubMed ID: 20111559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling.
    Maccormack S; Feinberg J
    Appl Opt; 1996 Oct; 35(30):5961-3. PubMed ID: 21127609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed phase-conjugate holographic data storage with a buffer hologram.
    Burr GW; Leyva I
    Opt Lett; 2000 Apr; 25(7):499-501. PubMed ID: 18064092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical implementation of a wavelet transform by the use of dynamic holographic recording in a photorefractive material.
    Joseph J; Oura T; Minemoto T
    Appl Opt; 1995 Jul; 34(20):3997-4003. PubMed ID: 21052222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Two-Wave Coupling in a Ce:KNSBN Crystal with Optimum Polarization of the Writing Beams.
    Liang BL; Wang Z; Cartwright CM; Gillespie WA; Ding MS; Zhang H
    Appl Opt; 2001 Jul; 40(20):3359-64. PubMed ID: 18360360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-adaptive amplified spontaneous emission suppression with a photorefractive two-beam coupling filter.
    Pettine J; Zhu M; Anderson DZ
    Opt Lett; 2020 Nov; 45(22):6258-6261. PubMed ID: 33186964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-transfer measurement and determination of the phase shift between the holographic grating and the fringe pattern in photorefractive materials.
    Kapoor R; Moghbel M; Venkateswarlu P
    Opt Lett; 1993 May; 18(9):696-8. PubMed ID: 19802243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams.
    Sarto AW; Wagner KH; Weverka RT; Weaver S; Walge EK
    Appl Opt; 1996 Oct; 35(29):5765-75. PubMed ID: 21127587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-hologram recording with one-beam encoding.
    Chiang CS; Shiu MT; Wu WH; Yeh NG; Chang CC
    Opt Express; 2012 Mar; 20(7):6897-904. PubMed ID: 22453367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements.
    Hwang YS; Bruder FK; Fäcke T; Kim SC; Walze G; Hagen R; Kim ES
    Opt Express; 2014 Apr; 22(8):9820-38. PubMed ID: 24787867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.