These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20725252)

  • 21. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
    Sasano Y; Browell EV
    Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.
    Pal S
    Sci Total Environ; 2016 Jun; 554-555():17-25. PubMed ID: 26950615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols.
    Goldsmith JE; Blair FH; Bisson SE; Turner DD
    Appl Opt; 1998 Jul; 37(21):4979-90. PubMed ID: 18285967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the earth's atmosphere on a spaceborne IR Doppler wind-sensing system.
    Post MJ
    Appl Opt; 1979 Aug; 18(15):2645-53. PubMed ID: 20212724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor.
    Sherlock V; Garnier A; Hauchecorne A; Keckhut P
    Appl Opt; 1999 Sep; 38(27):5838-50. PubMed ID: 18324099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring O3 with solar-blind Raman lidars.
    de Tomasi F; Perrone MR; Protopapa ML
    Appl Opt; 2001 Mar; 40(9):1314-20. PubMed ID: 18357117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarization of the Radiation Reflected and Transmitted by the Earth's Atmosphere.
    Plass GN; Kattawar GW
    Appl Opt; 1970 May; 9(5):1122-30. PubMed ID: 20076337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous analog and photon counting detection for Raman lidar.
    Newsom RK; Turner DD; Mielke B; Clayton M; Ferrare R; Sivaraman C
    Appl Opt; 2009 Jul; 48(20):3903-14. PubMed ID: 19593341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.
    Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B
    Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Notes on Rayleigh scattering in lidar signals.
    Adam M
    Appl Opt; 2012 Apr; 51(12):2135-49. PubMed ID: 22534926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.
    Aspey RA; McDermid IS; Leblanc T; Howe JW; Walsh TD
    Rev Sci Instrum; 2008 Sep; 79(9):094502. PubMed ID: 19044439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis.
    Ismail S; Browell EV
    Appl Opt; 1989 Sep; 28(17):3603-15. PubMed ID: 20555744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar.
    Kim D; Cha H
    Opt Lett; 2006 Oct; 31(19):2915-7. PubMed ID: 16969421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrared lidar overlap function: an experimental determination.
    Guerrero-Rascado JL; Costa MJ; Bortoli D; Silva AM; Lyamani H; Alados-Arboledas L
    Opt Express; 2010 Sep; 18(19):20350-9. PubMed ID: 20940927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.
    Higdon NS; Browell EV; Ponsardin P; Grossmann BE; Butler CF; Chyba TH; Mayo MN; Allen RJ; Heuser AW; Grant WB; Ismail S; Mayor SD; Carter AF
    Appl Opt; 1994 Sep; 33(27):6422-38. PubMed ID: 20941181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.