These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20725330)

  • 21. Effect of induced transverse chromatic aberration on peripheral vision.
    Winter S; Fathi MT; Venkataraman AP; Rosén R; Seidemann A; Esser G; Lundström L; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2015 Oct; 32(10):1764-71. PubMed ID: 26479929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical limitations of the Maxwellian view interferometer.
    Thibos LN
    Appl Opt; 1990 Apr; 29(10):1411-9. PubMed ID: 20563020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lenses for correcting chromatic aberration of the eye.
    Powell I
    Appl Opt; 1981 Dec; 20(24):4152-5. PubMed ID: 20372344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interferometric measurement of visual acuity and the effect of ocular chromatic aberration.
    Thibos LN; Bradley A; Still DL
    Appl Opt; 1991 Jun; 30(16):2079-87. PubMed ID: 20700182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans.
    Kröger RH; Gislén A
    Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Causes of spherical aberration induced by laser refractive surgery.
    Yoon G; Macrae S; Williams DR; Cox IG
    J Cataract Refract Surg; 2005 Jan; 31(1):127-35. PubMed ID: 15721705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3rd-order spherochromatism surface contribution and its intrinsic and induced aberration parts.
    Berner A; Kasperkiewicz E; Zhang Y; Gross H
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1368-1378. PubMed ID: 30110298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Camera processing with chromatic aberration.
    Korneliussen JT; Hirakawa K
    IEEE Trans Image Process; 2014 Oct; 23(10):4539-52. PubMed ID: 25163060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of age on chromatic aberration of the human eye.
    Mordi JA; Adrian WK
    Am J Optom Physiol Opt; 1985 Dec; 62(12):864-9. PubMed ID: 4083330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative assessment of contrast with spherical and aspherical intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2006 Aug; 32(8):1307-1319. PubMed ID: 16863967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. White-light Fourier transformer with low chromatic aberration.
    Andrés P; Lancis J; Furlan WD
    Appl Opt; 1992 Aug; 31(23):4682-7. PubMed ID: 20725478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long eye relief fundus camera and fixation target with partial correction of ocular longitudinal chromatic aberration.
    Steven S; Sulai YN; Cheong SK; Bentley J; Dubra A
    Biomed Opt Express; 2018 Dec; 9(12):6017-6037. PubMed ID: 31065410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photorefraction of the living eye: a model for linear knife edge photoscreening.
    Hodgkinson IJ; Chong KM; Molteno AC
    Appl Opt; 1991 Jun; 30(16):2263-9. PubMed ID: 20700203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axial chromatic aberration of the human eye.
    BEDFORD RE; WYSZECKI G
    J Opt Soc Am; 1957 Jun; 47(6):564-5. PubMed ID: 13429434
    [No Abstract]   [Full Text] [Related]  

  • 36. Eye tracking-based estimation and compensation of chromatic offsets for multi-wavelength retinal microstimulation with foveal cone precision.
    Domdei N; Linden M; Reiniger JL; Holz FG; Harmening WM
    Biomed Opt Express; 2019 Aug; 10(8):4126-4141. PubMed ID: 31452999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on chromatic aberration in a population of Chinese myopic eyes by means of optical design.
    He Y; Wang Y; Wang Z; Fang C; Liu Y; Zhang L; Zheng S; Wang L; Chang S
    Biomed Opt Express; 2013 May; 4(5):667-79. PubMed ID: 23667784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy.
    Fitzgerald JPS; Word RC; Könenkamp R
    Ultramicroscopy; 2016 Jan; 160():252-255. PubMed ID: 26555325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems.
    Cui Z; Kang J; Guo A; Zhu H; Yang Q; Zhu P; Sun M; Gao Q; Liu D; Ouyang X; Zhang Z; Wei H; Liang X; Zhang C; Yang S; Zhang D; Xie X; Zhu J
    Opt Express; 2019 Jun; 27(12):16812-16822. PubMed ID: 31252901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive depth estimation using chromatic aberration and a depth from defocus approach.
    Trouvé P; Champagnat F; Le Besnerais G; Sabater J; Avignon T; Idier J
    Appl Opt; 2013 Oct; 52(29):7152-64. PubMed ID: 24217733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.