These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20725367)

  • 21. High-speed, low-power optical phase conjugation using a hybrid amorphous silicon/ferroelectric-liquid-crystal device.
    Johnson KM; Mao CC; Moddel G; Handschy MA; Arnett K
    Opt Lett; 1990 Oct; 15(20):1114-6. PubMed ID: 19771013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-plasmon spatial light modulators based on liquid crystal.
    Caldwell ME; Yeatman EM
    Appl Opt; 1992 Jul; 31(20):3880-91. PubMed ID: 20725364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.
    Bañas A; Palima D; Glückstad J
    Opt Express; 2012 Apr; 20(9):9705-12. PubMed ID: 22535062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-optical implementation of a self-organizing map: a preliminary approach.
    Duvillier J; Killinger M; Heggarty K; Yao K; de Bougrenet de la Tocnaye JL
    Appl Opt; 1994 Jan; 33(2):258-66. PubMed ID: 20862015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical information processing characteristics of the microchannel spatial light modulator.
    Warde C; Weiss AM; Fisher AD; Thackara JI
    Appl Opt; 1981 Jun; 20(12):2066-74. PubMed ID: 20332888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle image velocimetry analysis using an optically addressed spatial light modulator: effects of nonlinear transfer function.
    Jakobsen ML; Hossack WJ; Greated CA
    Appl Opt; 1995 Apr; 34(11):1757-62. PubMed ID: 21037719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computation of high-stability DC balancing scheme for ferroelectric liquid crystal on silicon holograms using graphics processing units.
    Carpenter J; Wilkinson TD
    Opt Lett; 2011 Apr; 36(8):1323-5. PubMed ID: 21499344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Figure of merit of liquid-crystal materials for optically addressed spatial modulators.
    Belyaev VV; Chigrinov VG
    Appl Opt; 1993 Jan; 32(2):141-6. PubMed ID: 20802669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge-transfer-plate spatial light modulators.
    Warde C; Schiller CM; Bounds J; Horsky TN; Melnik G; Dillon R
    Appl Opt; 1992 Jul; 31(20):3971-9. PubMed ID: 20725374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoaddressed liquid crystal spatial light modulators.
    Armitage D; Thackara JL; Eades WD
    Appl Opt; 1989 Nov; 28(22):4763-71. PubMed ID: 20555948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Note: laser beam scanning using a ferroelectric liquid crystal spatial light modulator.
    Das A; Boruah BR
    Rev Sci Instrum; 2014 Apr; 85(4):046103. PubMed ID: 24784681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gray scale response from optically addressed spatial light modulators incorporating surface-stabilized ferroelectric liquid crystals.
    Landreth B; Moddel G
    Appl Opt; 1992 Jul; 31(20):3937-44. PubMed ID: 20725370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal intensity noise characteristics and discrete numeric accuracy of analog liquid-crystal-based spatial light modulators.
    Morelli MV; Krile TF; Walkup JF
    Appl Opt; 1994 May; 33(14):2812-28. PubMed ID: 20885640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 120 x 100 pixel antiblooming array based on optically addressed ferroelectric liquid-crystal cells.
    Guéna M; Wu ZY; de Bougrenet de la Tocnaye JL
    Opt Lett; 1994 Jul; 19(13):1001-3. PubMed ID: 19844515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical associative memory with bipolar edge-enhanced learning that uses a binary spatial light modulator and a BaTiO(3) crystal.
    Wang XM; Hall TJ; Wang J
    Appl Opt; 1995 Nov; 34(32):7565-72. PubMed ID: 21060633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing.
    Johnson KM; Moddel G
    Appl Opt; 1989 Nov; 28(22):4888-99. PubMed ID: 20555965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time velocity measurement by the use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator.
    Kobayashi Y; Takemori T; Mukohzaka N; Yoshida N; Fukushima S
    Appl Opt; 1994 May; 33(14):2785-94. PubMed ID: 20885637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator.
    de Bougrenet de la Tocnaye JL; Brocklehurst JR
    Appl Opt; 1991 Jan; 30(2):179-80. PubMed ID: 20581965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable multiple-level phase modulation that uses ferroelectric liquid-crystal spatial light modulators.
    Broomfield SE; Neil MA; Paige EG
    Appl Opt; 1995 Oct; 34(29):6652-65. PubMed ID: 21060520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial light modulators for high-brightness projection displays.
    Takizawa K; Fujii T; Kikuchi H; Fujikake H; Kawakita M; Hirano Y; Sato F
    Appl Opt; 1999 Sep; 38(26):5646-55. PubMed ID: 18324076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.