These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20725503)

  • 1. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot.
    Marocco D; Cangelosi A; Fischer K; Belpaeme T
    Front Neurorobot; 2010; 4():. PubMed ID: 20725503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grounding language in action and perception: from cognitive agents to humanoid robots.
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):139-51. PubMed ID: 20416855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grounding the Meanings in Sensorimotor Behavior using Reinforcement Learning.
    Farkaš I; Malík T; Rebrová K
    Front Neurorobot; 2012; 6():1. PubMed ID: 22393319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot.
    Fischer T; Puigbò JY; Camilleri D; Nguyen PDH; Moulin-Frier C; Lallée S; Metta G; Prescott TJ; Demiris Y; Verschure PFMJ
    Front Robot AI; 2018; 5():22. PubMed ID: 33500909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions.
    Yamada T; Murata S; Arie H; Ogata T
    Front Neurorobot; 2017; 11():70. PubMed ID: 29311891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curiosity driven reinforcement learning for motion planning on humanoids.
    Frank M; Leitner J; Stollenga M; Förster A; Schmidhuber J
    Front Neurorobot; 2014 Jan; 7():25. PubMed ID: 24432001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An embodied model for sensorimotor grounding and grounding transfer: experiments with epigenetic robots.
    Cangelosi A; Riga T
    Cogn Sci; 2006 Jul; 30(4):673-89. PubMed ID: 21702830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossmodal Language Grounding in an Embodied Neurocognitive Model.
    Heinrich S; Yao Y; Hinz T; Liu Z; Hummel T; Kerzel M; Weber C; Wermter S
    Front Neurorobot; 2020; 14():52. PubMed ID: 33154720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.
    Hinaut X; Petit M; Pointeau G; Dominey PF
    Front Neurorobot; 2014; 8():16. PubMed ID: 24834050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking language with embodied and teleological representations of action for humanoid cognition.
    Lallee S; Madden C; Hoen M; Dominey PF
    Front Neurorobot; 2010; 4():8. PubMed ID: 20577629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.
    Seepanomwan K; Caligiore D; Cangelosi A; Baldassarre G
    Neural Netw; 2015 Dec; 72():31-47. PubMed ID: 26604095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of abstract concept learning in embodied agents and robots.
    Cangelosi A; Stramandinoli F
    Philos Trans R Soc Lond B Biol Sci; 2018 Aug; 373(1752):. PubMed ID: 29914999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots.
    Taniguchi A; Taniguchi T; Cangelosi A
    Front Neurorobot; 2017; 11():66. PubMed ID: 29311888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.
    Kreiser R; Renner A; Leite VRC; Serhan B; Bartolozzi C; Glover A; Sandamirskaya Y
    Front Neurosci; 2020; 14():551. PubMed ID: 32655350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interacting With Robots to Investigate the Bases of Social Interaction.
    Sciutti A; Sandini G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2295-2304. PubMed ID: 29035218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.