These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 20725960)

  • 1. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration.
    Shim IK; Jung MR; Kim KH; Seol YJ; Park YJ; Park WH; Lee SJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):150-60. PubMed ID: 20725960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering.
    Wang X; Lou T; Zhao W; Song G; Li C; Cui G
    J Biomater Appl; 2016 May; 30(10):1545-51. PubMed ID: 26945811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.
    Sadiasa A; Nguyen TH; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(2):150-67. PubMed ID: 24138179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility.
    Xu Z; Liu P; Li H; Zhang M; Wu Q
    J Biomater Sci Polym Ed; 2020 Dec; 31(17):2285-2298. PubMed ID: 32723020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.
    Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering.
    Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH
    J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites.
    Liao L; Yang S; Miron RJ; Wei J; Zhang Y; Zhang M
    PLoS One; 2014; 9(9):e105876. PubMed ID: 25184285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering.
    Lin W; Chen M; Qu T; Li J; Man Y
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration.
    Ali IH; Khalil IA; El-Sherbiny IM
    Int J Biol Macromol; 2019 Sep; 136():154-164. PubMed ID: 31195040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.