These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 20725977)
1. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
2. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
3. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Luk A; Ojha U; Ruths M; Faust R Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013 [TBL] [Abstract][Full Text] [Related]
4. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes. Mishra A; Seethamraju K; Delaney J; Willoughby P; Faust R J Biomed Mater Res A; 2015 Dec; 103(12):3798-806. PubMed ID: 26097127 [TBL] [Abstract][Full Text] [Related]
5. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140 [TBL] [Abstract][Full Text] [Related]
6. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. Christenson EM; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669 [TBL] [Abstract][Full Text] [Related]
7. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387 [TBL] [Abstract][Full Text] [Related]
8. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141 [TBL] [Abstract][Full Text] [Related]
9. In vivo biostability of polysiloxane polyether polyurethanes: resistance to metal ion oxidation. Ward B; Anderson J; Ebert M; McVenes R; Stokes K J Biomed Mater Res A; 2006 May; 77(2):380-9. PubMed ID: 16425243 [TBL] [Abstract][Full Text] [Related]
10. Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. Schubert MA; Wiggins MJ; Schaefer MP; Hiltner A; Anderson JM J Biomed Mater Res; 1995 Mar; 29(3):337-47. PubMed ID: 7542244 [TBL] [Abstract][Full Text] [Related]
11. The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Simmons A; Hyvarinen J; Poole-Warren L Biomaterials; 2006 Sep; 27(25):4484-97. PubMed ID: 16690122 [TBL] [Abstract][Full Text] [Related]
12. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking. Ebert M; Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797 [TBL] [Abstract][Full Text] [Related]
13. In vivo biostability of polyether polyurethanes with fluoropolymer and polyethylene oxide surface modifying endgroups; resistance to metal ion oxidation. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2007 Jan; 80(1):34-44. PubMed ID: 16958046 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of in vitro oxidative degradation of poly(carbonate urethanes) for biostability screening. Dempsey DK; Carranza C; Chawla CP; Gray P; Eoh JH; Cereceres S; Cosgriff-Hernandez EM J Biomed Mater Res A; 2014 Oct; 102(10):3649-65. PubMed ID: 24265203 [TBL] [Abstract][Full Text] [Related]
15. Degradation of polyetherurethane by subcutaneous implantation into rats. II. Changes of contact angles, infrared spectra, and nuclear magnetic resonance spectra. Sato M; Xi T; Nakamura A; Kawasaki Y; Umemura T; Tsuda M; Kurokawa Y J Biomed Mater Res; 1995 Oct; 29(10):1201-13. PubMed ID: 8557722 [TBL] [Abstract][Full Text] [Related]
16. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. Hernandez R; Weksler J; Padsalgikar A; Runt J J Biomed Mater Res A; 2008 Nov; 87(2):546-56. PubMed ID: 18186070 [TBL] [Abstract][Full Text] [Related]
17. Effect of processing route and acetone pre-treatment on the biostability of pellethane materials used in medical device applications. Taylor JE; Laity PR; Freeburn S; Wong SS; Norris K; Khunkamchoo P; Cable M; Andrews G; Johnson AF; Cameron RE Biomaterials; 2005 Nov; 26(33):6467-76. PubMed ID: 15935471 [TBL] [Abstract][Full Text] [Related]
18. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. Wiggins MJ; MacEwan M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322 [TBL] [Abstract][Full Text] [Related]
19. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. Takahara A; Coury AJ; Hergenrother RW; Cooper SL J Biomed Mater Res; 1991 Mar; 25(3):341-56. PubMed ID: 2026639 [TBL] [Abstract][Full Text] [Related]
20. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]