BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20726028)

  • 1. Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda.
    Evans RM; Behiry EM; Tey LH; Guo J; Loveridge EJ; Allemann RK
    Chembiochem; 2010 Sep; 11(14):2010-7. PubMed ID: 20726028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli.
    Ohmae E; Murakami C; Tate S; Gekko K; Hata K; Akasaka K; Kato C
    Biochim Biophys Acta; 2012 Mar; 1824(3):511-9. PubMed ID: 22266402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pressure nmr study of dihydrofolate reductase from a deep-sea bacterium Moritella profunda.
    Hata K; Kono R; Fujisawa M; Kitahara R; Kamatari YO; Akasaka K; Xu Y
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):311-6. PubMed ID: 15529739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria.
    Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C
    J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aliphatic (1)H, (13)C and (15)N chemical shift assignments of dihydrofolate reductase from the psychropiezophile Moritella profunda in complex with NADP(+) and folate.
    Loveridge EJ; Matthews SM; Williams C; Whittaker SB; Günther UL; Evans RM; Dawson WM; Crump MP; Allemann RK
    Biomol NMR Assign; 2013 Apr; 7(1):61-4. PubMed ID: 22415546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loop interactions during catalysis by dihydrofolate reductase from Moritella profunda.
    Behiry EM; Evans RM; Guo J; Loveridge EJ; Allemann RK
    Biochemistry; 2014 Jul; 53(29):4769-74. PubMed ID: 25014120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature?
    Xu Y; Feller G; Gerday C; Glansdorff N
    J Bacteriol; 2003 Sep; 185(18):5519-26. PubMed ID: 12949104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are the catalytic properties of enzymes from piezophilic organisms pressure adapted?
    Hay S; Evans RM; Levy C; Loveridge EJ; Wang X; Leys D; Allemann RK; Scrutton NS
    Chembiochem; 2009 Sep; 10(14):2348-53. PubMed ID: 19681091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Pressure and Temperature on the Atomic Fluctuations of Dihydrofolate Reductase from a Psychropiezophile and a Mesophile.
    Huang Q; Rodgers JM; Hemley RJ; Ichiye T
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30909394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Allemann RK
    Chembiochem; 2011 May; 12(8):1258-62. PubMed ID: 21506230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Tey LH; Allemann RK
    J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural investigation of cold activity and regulation of aspartate carbamoyltransferase from the extreme psychrophilic bacterium Moritella profunda.
    De Vos D; Xu Y; Hulpiau P; Vergauwen B; Van Beeumen JJ
    J Mol Biol; 2007 Jan; 365(2):379-95. PubMed ID: 17070547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the occluded conformation in bacterial dihydrofolate reductases.
    Behiry EM; Luk LY; Matthews SM; Loveridge EJ; Allemann RK
    Biochemistry; 2014 Jul; 53(29):4761-8. PubMed ID: 25014833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of large-scale motions in catalysis by dihydrofolate reductase.
    Loveridge EJ; Tey LH; Behiry EM; Dawson WM; Evans RM; Whittaker SB; Günther UL; Williams C; Crump MP; Allemann RK
    J Am Chem Soc; 2011 Dec; 133(50):20561-70. PubMed ID: 22060818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiharmonic Analysis of the Energy Landscapes of Dihydrofolate Reductase from Piezophiles and Mesophiles.
    Huang Q; Rodgers JM; Hemley RJ; Ichiye T
    J Phys Chem B; 2018 May; 122(21):5527-5533. PubMed ID: 29370701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.