These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2072669)

  • 21. Neurophysiological Muscle Activation Scheme for Controlling Vocal Fold Models.
    Manriquez R; Peterson SD; Prado P; Orio P; Galindo GE; Zanartu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1043-1052. PubMed ID: 30908260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rules for controlling low-dimensional vocal fold models with muscle activation.
    Titze IR; Story BH
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1064-76. PubMed ID: 12243155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of the rat medial gastrocnemius muscle based on inputs to motoneurons and on an algorithm for prediction of the motor unit force.
    Raikova R; Celichowski J; Angelova S; Krutki P
    J Neurophysiol; 2018 Oct; 120(4):1973-1987. PubMed ID: 30020845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single motor unit activity of human intrinsic laryngeal muscles during respiration.
    Chanaud CM; Ludlow CL
    Ann Otol Rhinol Laryngol; 1992 Oct; 101(10):832-40. PubMed ID: 1416638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A basic study on the vocal fold vibration from the viewpoint of the layer system of the vocal fold.
    Tsuzuki T; Fujioka T; Fukuda H; Ohki K; Kawasaki Y; Kita K
    Keio J Med; 1988 Jun; 37(2):144-54. PubMed ID: 3172619
    [No Abstract]   [Full Text] [Related]  

  • 29. Length-tension relationship of the feline thyroarytenoid muscle.
    Johns MM; Urbanchek M; Chepeha DB; Kuzon WM; Hogikyan ND
    J Voice; 2004 Sep; 18(3):285-91. PubMed ID: 15331100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Elementary muscular mechanisms for regulation of tension of the vocal cords in phonation].
    Dejonckere P
    Folia Phoniatr (Basel); 1980; 32(1):1-13. PubMed ID: 7380367
    [No Abstract]   [Full Text] [Related]  

  • 31. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Movements of selected points on a vocal fold during vibration.
    Hirano M; Gould WJ; Lambiase A; Kakita Y
    Folia Phoniatr (Basel); 1980; 32(1):39-50. PubMed ID: 7380371
    [No Abstract]   [Full Text] [Related]  

  • 34. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vagal nerve stimulation: clinical and electrophysiological effects on vocal fold function.
    Shaffer MJ; Jackson CE; Szabo CA; Simpson CB
    Ann Otol Rhinol Laryngol; 2005 Jan; 114(1 Pt 1):7-14. PubMed ID: 15697156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW; Fu M
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the mechanics of fundamental frequency variation during phonation onset.
    Serry MA; Stepp CE; Peterson SD
    Biomech Model Mechanobiol; 2023 Feb; 22(1):339-356. PubMed ID: 36370231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.