These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20726703)

  • 1. A physiological systems model for iodine for use in radiation protection.
    Leggett RW
    Radiat Res; 2010 Oct; 174(4):496-516. PubMed ID: 20726703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biokinetic model for manganese.
    Leggett RW
    Sci Total Environ; 2011 Sep; 409(20):4179-86. PubMed ID: 21802707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Korean-specific biokinetic model for iodine in radiological protection.
    Kwon TE; Chung Y; Jin YW
    J Radiol Prot; 2021 Jun; 41(2):. PubMed ID: 33395670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetry of radioiodine therapy in patients with nodular goiter after pretreatment with a single, low dose of recombinant human thyroid-stimulating hormone.
    Nieuwlaat WA; Hermus AR; Ross HA; Buijs WC; Edelbroek MA; Bus JW; Corstens FH; Huysmans DA
    J Nucl Med; 2004 Apr; 45(4):626-33. PubMed ID: 15073259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generic biokinetic model for Carbon-14.
    Manger RP
    Radiat Prot Dosimetry; 2011 Jan; 143(1):42-51. PubMed ID: 21075764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of stable iodine on the uptake of the thyroid--model versus experiment].
    Weber K; Wellner U; Voth E; Schicha H
    Nuklearmedizin; 2001 Feb; 40(1):31-7. PubMed ID: 11373936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of radioiodine exposure and protective thyroid blocking in a new biokinetic model of the mother-fetus unit at different pregnancy ages.
    Rump A; Hermann C; Lamkowski A; Abend M; Port M
    Arch Toxicol; 2022 Nov; 96(11):2947-2965. PubMed ID: 35922584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency.
    McLanahan ED; Andersen ME; Fisher JW
    Toxicol Sci; 2008 Apr; 102(2):241-53. PubMed ID: 18178547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters.
    Harrison J
    J Radiol Prot; 2009 Jun; 29(2A):A81-A105. PubMed ID: 19454809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation-induced thyroid stunning: differential effects of (123)I, (131)I, (99m)Tc, and (211)At on iodide transport and NIS mRNA expression in cultured thyroid cells.
    Lundh C; Lindencrona U; Postgård P; Carlsson T; Nilsson M; Forssell-Aronsson E
    J Nucl Med; 2009 Jul; 50(7):1161-7. PubMed ID: 19525464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biokinetic models for radiocaesium and its progeny.
    Leggett RW
    J Radiol Prot; 2013 Mar; 33(1):123-40. PubMed ID: 23296405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid modulation of thyroid dual oxidase activity in rats and its impact on thyroid iodine organification.
    Mühlbauer M; da Silva AC; Marassi MP; Lourenço AL; Ferreira AC; de Carvalho DP
    J Endocrinol; 2010 Jun; 205(3):271-7. PubMed ID: 20212023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biokinetic model for zinc for use in radiation protection.
    Leggett RW
    Sci Total Environ; 2012 Mar; 420():1-12. PubMed ID: 22326317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible importance of thyroidal iodine compartments in the adaptation of thyroid hormone secretion to antithyroid drugs.
    Studer H; Kohler H; Bürgi H; Binswanger C; Steiger J
    Endocrinology; 1972 Nov; 91(5):1154-9. PubMed ID: 5072796
    [No Abstract]   [Full Text] [Related]  

  • 15. Suppression of thyroid radioiodine uptake by various doses of stable iodide.
    Sternthal E; Lipworth L; Stanley B; Abreau C; Fang SL; Braverman LE
    N Engl J Med; 1980 Nov; 303(19):1083-8. PubMed ID: 7421914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biokinetics of iodide in man: refinement of current ICRP dosimetry models.
    Johansson L; Leide-Svegborn S; Mattsson S; Nosslin B
    Cancer Biother Radiopharm; 2003 Jun; 18(3):445-50. PubMed ID: 12954132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection of the infant thyroid from radioactive contamination by the administration of stable iodide. An experimental evaluation in chimpanzees.
    Noteboom JL; Hummel WA; Broerse JJ; de Vijlder JJ; Vulsma T; van Bekkum DW
    Radiat Res; 1997 Jun; 147(6):698-706. PubMed ID: 9189168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of acute and chronic iodine excess.
    Saller B; Fink H; Mann K
    Exp Clin Endocrinol Diabetes; 1998; 106 Suppl 3():S34-8. PubMed ID: 9865552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of elevated iodide supply on the autonomously functioning thyroid gland.
    Waters W; Kutzim H; Wellner U
    Nuklearmedizin; 1984 Apr; 23(2):93-9. PubMed ID: 6473118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of a new biokinetic model of zirconium in internal dosimetry: part I, parameter uncertainty analysis.
    Li WB; Greiter M; Oeh U; Hoeschen C
    Health Phys; 2011 Dec; 101(6):660-76. PubMed ID: 22048485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.