BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20726779)

  • 1. Integrative responses to high pH stress in S. cerevisiae.
    Ariño J
    OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress.
    Casamayor A; Serrano R; Platara M; Casado C; Ruiz A; Ariño J
    Biochem J; 2012 May; 444(1):39-49. PubMed ID: 22372618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids.
    Mira NP; Lourenço AB; Fernandes AR; Becker JD; Sá-Correia I
    FEMS Yeast Res; 2009 Mar; 9(2):202-16. PubMed ID: 19220866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.
    Serrano R; Martín H; Casamayor A; Ariño J
    J Biol Chem; 2006 Dec; 281(52):39785-95. PubMed ID: 17088254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress.
    Roque A; Petrezsélyová S; Serra-Cardona A; Ariño J
    BMC Genomics; 2016 Aug; 17():662. PubMed ID: 27544903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinate responses to alkaline pH stress in budding yeast.
    Serra-Cardona A; Canadell D; Ariño J
    Microb Cell; 2015 May; 2(6):182-196. PubMed ID: 28357292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways.
    Kullas AL; Martin SJ; Davis D
    Mol Microbiol; 2007 Nov; 66(4):858-71. PubMed ID: 17927701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Shima J; Ando A; Takagi H
    Yeast; 2008 Mar; 25(3):179-90. PubMed ID: 18224659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin.
    Groppi S; Belotti F; Brandão RL; Martegani E; Tisi R
    Cell Calcium; 2011 Jun; 49(6):376-86. PubMed ID: 21511333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.
    Araki Y; Wu H; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jan; 107(1):1-6. PubMed ID: 19147100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress.
    Serra-Cardona A; Petrezsélyová S; Canadell D; Ramos J; Ariño J
    Mol Cell Biol; 2014 Dec; 34(24):4420-35. PubMed ID: 25266663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cesium chloride sensing and signaling in Saccharomyces cerevisiae: an interplay among the HOG and CWI MAPK pathways and the transcription factor Yaf9.
    Casagrande V; Del Vescovo V; Militti C; Mangiapelo E; Frontali L; Negri R; Bianchi MM
    FEMS Yeast Res; 2009 May; 9(3):400-10. PubMed ID: 19220477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae.
    Heath VL; Shaw SL; Roy S; Cyert MS
    Eukaryot Cell; 2004 Jun; 3(3):695-704. PubMed ID: 15189990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling.
    Rubio-Texeira M; Van Zeebroeck G; Voordeckers K; Thevelein JM
    FEMS Yeast Res; 2010 Mar; 10(2):134-49. PubMed ID: 19849717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and non-clinical isolates of Saccharomyces cerevisiae.
    de Llanos R; Hernández-Haro C; Barrio E; Querol A; Fernández-Espinar MT; Molina M
    Yeast; 2010 Aug; 27(8):549-61. PubMed ID: 20586115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
    Jamieson DJ
    Yeast; 1998 Dec; 14(16):1511-27. PubMed ID: 9885153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mitochondrial signaling: retrograde regulation in yeast Saccharomyces cerevisiae].
    Iurina NP; Odintsova MS
    Genetika; 2008 Nov; 44(11):1445-52. PubMed ID: 19137726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.