These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20726884)

  • 21. Symbolic cues enhance express visuomotor responses in human arm muscles at the motor planning rather than the visuospatial processing stage.
    Contemori S; Loeb GE; Corneil BD; Wallis G; Carroll TJ
    J Neurophysiol; 2022 Sep; 128(3):494-510. PubMed ID: 35858112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-contrast, moving targets in an emerging target paradigm promote fast visuomotor responses during visually guided reaching.
    Kozak RA; Corneil BD
    J Neurophysiol; 2021 Jul; 126(1):68-81. PubMed ID: 34077283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does the movement matter?: determinants of the latency of temporally urgent motor reactions.
    Lakhani B; Van Ooteghem K; Miyasike-Dasilva V; Akram S; Mansfield A; McIlroy WE
    Brain Res; 2011 Oct; 1416():35-43. PubMed ID: 21907332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Emerging Target Paradigm to Evoke Fast Visuomotor Responses on Human Upper Limb Muscles.
    Kozak RA; Cecala AL; Corneil BD
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The coordination of eye, head, and arm movements during reaching at a single visual target.
    Biguer B; Jeannerod M; Prablanc C
    Exp Brain Res; 1982; 46(2):301-4. PubMed ID: 7095037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Express arm responses appear bilaterally on upper-limb muscles in an arm choice reaching task.
    Kearsley SL; Cecala AL; Kozak RA; Corneil BD
    J Neurophysiol; 2022 Apr; 127(4):969-983. PubMed ID: 35294268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of temporal predictability on express visuomotor responses.
    Contemori S; Loeb GE; Corneil BD; Wallis G; Carroll TJ
    J Neurophysiol; 2021 Mar; 125(3):731-747. PubMed ID: 33357166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Trial-by-Trial Window into Sensorimotor Transformations in the Human Motor Periphery.
    Gu C; Wood DK; Gribble PL; Corneil BD
    J Neurosci; 2016 Aug; 36(31):8273-82. PubMed ID: 27488645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplitude Scaling Compensates for Serial Delays in Correcting Eye and Arm Movements.
    Kerr GK; Lockwood RJ
    J Mot Behav; 1995 Dec; 27(4):349-365. PubMed ID: 12529230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Done in 100 ms: path-dependent visuomotor transformation in the human upper limb.
    Gu C; Pruszynski JA; Gribble PL; Corneil BD
    J Neurophysiol; 2018 Apr; 119(4):1319-1328. PubMed ID: 29212925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual response properties of neck motor neurons in the honeybee.
    Hung YS; van Kleef JP; Ibbotson MR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Dec; 197(12):1173-87. PubMed ID: 21909972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parcellation of sensorimotor transformations for arm movements.
    Flanders M; Soechting JF
    J Neurosci; 1990 Jul; 10(7):2420-7. PubMed ID: 2376780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct visuomotor mapping for fast visually-evoked arm movements.
    Reynolds RF; Day BL
    Neuropsychologia; 2012 Dec; 50(14):3169-73. PubMed ID: 23063966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in expectation consequent on experience, modeled by a simple, forgetful neural circuit.
    Anderson AJ; Carpenter RH
    J Vis; 2006 Jul; 6(8):822-35. PubMed ID: 16895461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visually triggered eye-arm movements in man.
    Herman R; Herman R; Maulucci R
    Exp Brain Res; 1981; 42(3-4):392-8. PubMed ID: 7238679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of metabolic cost during motor learning of arm reaching dynamics.
    Huang HJ; Kram R; Ahmed AA
    J Neurosci; 2012 Feb; 32(6):2182-90. PubMed ID: 22323730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemispheric control of unilateral and bilateral movements of proximal and distal parts of the arm as inferred from simple reaction time to lateralized light stimuli in man.
    Di Stefano M; Morelli M; Marzi CA; Berlucchi G
    Exp Brain Res; 1980 Jan; 38(2):197-204. PubMed ID: 7358103
    [No Abstract]   [Full Text] [Related]  

  • 38. Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery.
    Wood DK; Gu C; Corneil BD; Gribble PL; Goodale MA
    Eur J Neurosci; 2015 Aug; 42(3):1919-32. PubMed ID: 26061189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor programmes for goal-directed movements are continuously adjusted according to changes in target location.
    van Sonderen JF; Gielen CC; Denier van der Gon JJ
    Exp Brain Res; 1989; 78(1):139-46. PubMed ID: 2591508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole body lexical decision.
    Moreno MA; Stepp N; Turvey MT
    Neurosci Lett; 2011 Feb; 490(2):126-9. PubMed ID: 21184808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.