These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 20726896)
1. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards β-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. Haddouche R; Delessert S; Sabirova J; Neuvéglise C; Poirier Y; Nicaud JM FEMS Yeast Res; 2010 Nov; 10(7):917-27. PubMed ID: 20726896 [TBL] [Abstract][Full Text] [Related]
2. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Haddouche R; Poirier Y; Delessert S; Sabirova J; Pagot Y; Neuvéglise C; Nicaud JM Appl Microbiol Biotechnol; 2011 Sep; 91(5):1327-40. PubMed ID: 21603933 [TBL] [Abstract][Full Text] [Related]
3. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Mlícková K; Roux E; Athenstaedt K; d'Andrea S; Daum G; Chardot T; Nicaud JM Appl Environ Microbiol; 2004 Jul; 70(7):3918-24. PubMed ID: 15240264 [TBL] [Abstract][Full Text] [Related]
4. Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach. García EE; Nicaud JM; Belin JM; Waché Y Biotechnol J; 2007 Oct; 2(10):1280-5. PubMed ID: 17886242 [TBL] [Abstract][Full Text] [Related]
6. Cloning, sequencing, and characterization of five genes coding for acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Wang H; Le Dall MT; Waché Y; Laroche C; Belin JM; Nicaud JM Cell Biochem Biophys; 1999; 31(2):165-74. PubMed ID: 10593257 [TBL] [Abstract][Full Text] [Related]
7. Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Waché Y; Aguedo M; Choquet A; Gatfield IL; Nicaud JM; Belin JM Appl Environ Microbiol; 2001 Dec; 67(12):5700-4. PubMed ID: 11722925 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. Fickers P; Benetti PH; Waché Y; Marty A; Mauersberger S; Smit MS; Nicaud JM FEMS Yeast Res; 2005 Apr; 5(6-7):527-43. PubMed ID: 15780653 [TBL] [Abstract][Full Text] [Related]
9. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. Titorenko VI; Nicaud JM; Wang H; Chan H; Rachubinski RA J Cell Biol; 2002 Feb; 156(3):481-94. PubMed ID: 11815635 [TBL] [Abstract][Full Text] [Related]
10. Crystal Structure of Acyl-CoA Oxidase 3 from Kim S; Kim KJ J Microbiol Biotechnol; 2018 Apr; 28(4):597-605. PubMed ID: 29429324 [TBL] [Abstract][Full Text] [Related]
11. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. Gao C; Qi Q; Madzak C; Lin CS J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1255-62. PubMed ID: 26153503 [TBL] [Abstract][Full Text] [Related]
12. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. Wang Q; Nomura CT J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680 [TBL] [Abstract][Full Text] [Related]
13. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102 [TBL] [Abstract][Full Text] [Related]
14. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes. Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465 [TBL] [Abstract][Full Text] [Related]
15. Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica. Zhang H; Damude HG; Yadav NS Yeast; 2012 Jan; 29(1):25-38. PubMed ID: 22189651 [TBL] [Abstract][Full Text] [Related]
16. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
17. Structural insight into the substrate specificity of acyl-CoA oxidase1 from Yarrowia lipolytica for short-chain dicarboxylyl-CoAs. Kim S; Kim KJ Biochem Biophys Res Commun; 2018 Jan; 495(2):1628-1634. PubMed ID: 29198706 [TBL] [Abstract][Full Text] [Related]
18. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Beopoulos A; Chardot T; Nicaud JM Biochimie; 2009 Jun; 91(6):692-6. PubMed ID: 19248816 [TBL] [Abstract][Full Text] [Related]
19. Control of lipid accumulation in the yeast Yarrowia lipolytica. Beopoulos A; Mrozova Z; Thevenieau F; Le Dall MT; Hapala I; Papanikolaou S; Chardot T; Nicaud JM Appl Environ Microbiol; 2008 Dec; 74(24):7779-89. PubMed ID: 18952867 [TBL] [Abstract][Full Text] [Related]
20. Hydroxy-fatty acid production in a Pseudomonas aeruginosa 42A2 PHA synthase mutant generated by directed mutagenesis. Torrego-Solana N; Martin-Arjol I; Bassas-Galia M; Diaz P; Manresa A Appl Microbiol Biotechnol; 2012 Mar; 93(6):2551-61. PubMed ID: 22083273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]