BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20726896)

  • 21. Straight-chain acyl-CoA oxidase knockout mouse accumulates extremely long chain fatty acids from alpha-linolenic acid: evidence for runaway carousel-type enzyme kinetics in peroxisomal beta-oxidation diseases.
    Infante JP; Tschanz CL; Shaw N; Michaud AL; Lawrence P; Brenna JT
    Mol Genet Metab; 2002 Feb; 75(2):108-19. PubMed ID: 11855929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III.
    Matsumoto K; Murata T; Nagao R; Nomura CT; Arai S; Arai Y; Takase K; Nakashita H; Taguchi S; Shimada H
    Biomacromolecules; 2009 Apr; 10(4):686-90. PubMed ID: 19265441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica.
    Gatter M; Förster A; Bär K; Winter M; Otto C; Petzsch P; Ježková M; Bahr K; Pfeiffer M; Matthäus F; Barth G
    FEMS Yeast Res; 2014 Sep; 14(6):858-72. PubMed ID: 24931727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli.
    Rehm BH; Steinbüchel A
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):205-9. PubMed ID: 11330715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica.
    Poopanitpan N; Kobayashi S; Fukuda R; Horiuchi H; Ohta A
    Biochem Biophys Res Commun; 2010 Nov; 402(4):731-5. PubMed ID: 20977884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.
    Mittendorf V; Bongcam V; Allenbach L; Coullerez G; Martini N; Poirier Y
    Plant J; 1999 Oct; 20(1):45-55. PubMed ID: 10571864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica.
    Wang HJ; Le Dall MT; Wach Y; Laroche C; Belin JM; Gaillardin C; Nicaud JM
    J Bacteriol; 1999 Sep; 181(17):5140-8. PubMed ID: 10464181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation?
    Ren Q; de Roo G; Ruth K; Witholt B; Zinn M; Thöny-Meyer L
    Biomacromolecules; 2009 Apr; 10(4):916-22. PubMed ID: 19267463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p.
    Luo YS; Nicaud JM; Van Veldhoven PP; Chardot T
    Arch Biochem Biophys; 2002 Nov; 407(1):32-8. PubMed ID: 12392712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica.
    Tenagy ; Park JS; Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R
    FEMS Yeast Res; 2015 Jun; 15(4):fov031. PubMed ID: 26019148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation.
    Poirier Y; Erard N; Petétot JM
    Appl Environ Microbiol; 2001 Nov; 67(11):5254-60. PubMed ID: 11679353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Yarrowia lipolytica for Production of Fatty Alcohols with YaliBrick Vectors.
    Sun W; Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():159-173. PubMed ID: 33847989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of polyhydroxyalkanoates co-polymer in E. coli using genes from Pseudomonas and Bacillus.
    Davis R; Anilkumar PK; Chandrashekar A; Shamala TR
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):207-16. PubMed ID: 18357511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica.
    Mori K; Iwama R; Kobayashi S; Horiuchi H; Fukuda R; Ohta A
    FEMS Yeast Res; 2013 Mar; 13(2):233-40. PubMed ID: 23241327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates.
    Sujatha K; Mahalakshmi A; Shenbagarathai R
    Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene dosage effects on polyhydroxyalkanoates synthesis from n-alcohols in Paracoccus denitrificans.
    Maehara A; Ikai K; Ueda S; Yamane T
    Biotechnol Bioeng; 1998 Oct; 60(1):61-9. PubMed ID: 10099406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442.
    de Eugenio LI; Galán B; Escapa IF; Maestro B; Sanz JM; García JL; Prieto MA
    Environ Microbiol; 2010 Jun; 12(6):1591-603. PubMed ID: 20406286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.