BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20727346)

  • 1. Towards a thermodynamic definition of efficacy in partial agonism: The thermodynamics of efficacy and ligand proton transfer in a G protein-coupled receptor of the rhodopsin class.
    Broadley KJ; Sykes SC; Davies RH
    Biochem Pharmacol; 2010 Nov; 80(10):1537-45. PubMed ID: 20727346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ligand-receptor-G-protein ternary complex as a GTP-synthase. steady-state proton pumping and dose-response relationships for beta -adrenoceptors.
    Broadley KJ; Nederkoorn PH; Timmerman H; Timms D; Davies RH
    J Theor Biol; 2000 Jul; 205(2):297-320. PubMed ID: 10873440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic properties of agonist interactions with the beta adrenergic receptor-coupled adenylate cyclase system. I. High- and low-affinity states of agonist binding to membrane-bound beta adrenergic receptors.
    Contreras ML; Wolfe BB; Molinoff PB
    J Pharmacol Exp Ther; 1986 Apr; 237(1):154-64. PubMed ID: 2870174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic properties of agonist interactions with the beta adrenergic receptor-coupled adenylate cyclase system. II. Agonist binding to soluble beta adrenergic receptors.
    Contreras ML; Wolfe BB; Molinoff PB
    J Pharmacol Exp Ther; 1986 Apr; 237(1):165-72. PubMed ID: 2870175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTP synthases. Proton pumping and phosphorylation in ligand-receptor-G alpha-protein complexes.
    Nederkoorn PH; Timmerman H; Donné-Op Den Kelder GM; Timms D; Wilkinson AJ; Kelly DR; Broadley KJ; Davies RH
    Recept Channels; 1996; 4(2):111-28. PubMed ID: 8865363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into agonist-induced activation of G-protein-coupled receptors.
    Deupi X; Standfuss J
    Curr Opin Struct Biol; 2011 Aug; 21(4):541-51. PubMed ID: 21723721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations.
    Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of binding enthalpy and entropy to affinity of antagonist and agonist binding at human and guinea pig histamine H(1)-receptor.
    Wittmann HJ; Seifert R; Strasser A
    Mol Pharmacol; 2009 Jul; 76(1):25-37. PubMed ID: 19346300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors.
    Gouldson PR; Snell CR; Reynolds CA
    J Med Chem; 1997 Nov; 40(24):3871-86. PubMed ID: 9397168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis within helix 6 of the human beta1-adrenergic receptor identifies Lysine324 as a residue involved in imparting the high-affinity binding state of agonists.
    Zeitoun O; Santos NM; Gardner LA; White SW; Bahouth SW
    Mol Pharmacol; 2006 Sep; 70(3):838-50. PubMed ID: 16760361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists.
    Roy KK; Saxena AK
    J Chem Inf Model; 2011 Jun; 51(6):1405-22. PubMed ID: 21534556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore.
    Axe FU; Bembenek SD; Szalma S
    J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR).
    Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J
    J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets?
    Bissantz C; Bernard P; Hibert M; Rognan D
    Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists.
    Wang CD; Buck MA; Fraser CM
    Mol Pharmacol; 1991 Aug; 40(2):168-79. PubMed ID: 1678850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the adrenergic beta-2 receptor and binding sites for agonist and antagonist.
    Lewell XQ
    Drug Des Discov; 1992; 9(1):29-48. PubMed ID: 1360841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational complexity of G-protein-coupled receptors.
    Kobilka BK; Deupi X
    Trends Pharmacol Sci; 2007 Aug; 28(8):397-406. PubMed ID: 17629961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.