BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 20727386)

  • 1. Differences in responsiveness of mediodorsal thalamic and medial prefrontal cortical neurons to social interaction and systemically administered phencyclidine in rats.
    Jodo E; Katayama T; Okamoto M; Suzuki Y; Hoshino K; Kayama Y
    Neuroscience; 2010 Nov; 170(4):1153-64. PubMed ID: 20727386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway.
    Jodo E; Suzuki Y; Katayama T; Hoshino KY; Takeuchi S; Niwa S; Kayama Y
    Cereb Cortex; 2005 May; 15(5):663-9. PubMed ID: 15342431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of medial prefrontal cortex neurons by phencyclidine is mediated via AMPA/kainate glutamate receptors in anesthetized rats.
    Katayama T; Jodo E; Suzuki Y; Hoshino KY; Takeuchi S; Kayama Y
    Neuroscience; 2007 Dec; 150(2):442-8. PubMed ID: 17935894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia.
    Jodo E
    J Physiol Paris; 2013 Dec; 107(6):434-40. PubMed ID: 23792022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phencyclidine affects firing activity of basolateral amygdala neurons related to social behavior in rats.
    Katayama T; Jodo E; Suzuki Y; Hoshino KY; Takeuchi S; Kayama Y
    Neuroscience; 2009 Mar; 159(1):335-43. PubMed ID: 19162135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phencyclidine affects firing activity of ventral tegmental area neurons that are related to reward and social behaviors in rats.
    Katayama T; Okamoto M; Suzuki Y; Hoshino KY; Jodo E
    Neuroscience; 2013 Jun; 240():336-48. PubMed ID: 23458711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats.
    Suzuki Y; Jodo E; Takeuchi S; Niwa S; Kayama Y
    Neuroscience; 2002; 114(3):769-79. PubMed ID: 12220577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the phencyclidine-induced increase in prefrontal cortical dopamine metabolism in the rat.
    Umino A; Takahashi K; Nishikawa T
    Br J Pharmacol; 1998 May; 124(2):377-85. PubMed ID: 9641556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain.
    Troyano-Rodriguez E; Lladó-Pelfort L; Santana N; Teruel-Martí V; Celada P; Artigas F
    Biol Psychiatry; 2014 Dec; 76(12):937-45. PubMed ID: 25038984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine.
    Shi WX; Zhang XX
    J Pharmacol Exp Ther; 2003 May; 305(2):680-7. PubMed ID: 12606677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antipsychotic drug brexpiprazole reverses phencyclidine-induced disruptions of thalamocortical networks.
    van den Munkhof HE; Arnt J; Celada P; Artigas F
    Eur Neuropsychopharmacol; 2017 Dec; 27(12):1248-1257. PubMed ID: 29128144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks.
    Amat-Foraster M; Jensen AA; Plath N; Herrik KF; Celada P; Artigas F
    Neuropharmacology; 2018 Jul; 137():13-23. PubMed ID: 29702122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat.
    Amat-Foraster M; Celada P; Richter U; Jensen AA; Plath N; Artigas F; Herrik KF
    Neuropharmacology; 2019 Nov; 158():107745. PubMed ID: 31445017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses.
    Au-Young SM; Shen H; Yang CR
    Synapse; 1999 Dec; 34(4):245-55. PubMed ID: 10529719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory role of catecholamines in the transsynaptic expression of c-fos in the rat medial prefrontal cortex induced by disinhibition of the mediodorsal thalamus: a study employing microdialysis and immunohistochemistry.
    Bubser M; Feenstra MG; Erdtsieck-Ernste EB; Botterblom MH; Van Uum HF; Pool CW
    Brain Res; 1997 Feb; 749(2):214-25. PubMed ID: 9138721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat.
    Abdul-Monim Z; Neill JC; Reynolds GP
    J Psychopharmacol; 2007 Mar; 21(2):198-205. PubMed ID: 17329300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
    Hoover WB; Vertes RP
    Brain Struct Funct; 2007 Sep; 212(2):149-79. PubMed ID: 17717690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different effects of phencyclidine and methamphetamine on firing activity of medial prefrontal cortex neurons in freely moving rats.
    Jodo E; Suzuki Y; Takeuchi S; Niwa S; Kayama Y
    Brain Res; 2003 Feb; 962(1-2):226-31. PubMed ID: 12543474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography.
    Ray JP; Price JL
    J Comp Neurol; 1992 Sep; 323(2):167-97. PubMed ID: 1401255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disinhibition of the mediodorsal thalamus induces fos-like immunoreactivity in both pyramidal and GABA-containing neurons in the medial prefrontal cortex of rats, but does not affect prefrontal extracellular GABA levels.
    Bubser M; de Brabander JM; Timmerman W; Feenstra MG; Erdtsieck-Ernste EB; Rinkens A; van Uum JF; Westerink BH
    Synapse; 1998 Oct; 30(2):156-65. PubMed ID: 9723785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.