These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20727610)

  • 1. Sensori-motor integration during stance: time adaptation of control mechanisms on adding or removing vision.
    Sozzi S; Monti A; De Nunzio AM; Do MC; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):172-89. PubMed ID: 20727610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information.
    Sozzi S; Do MC; Monti A; Schieppati M
    Neuroscience; 2012 Jun; 212():59-76. PubMed ID: 22516013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg muscle activity during tandem stance and the control of body balance in the frontal plane.
    Sozzi S; Honeine JL; Do MC; Schieppati M
    Clin Neurophysiol; 2013 Jun; 124(6):1175-86. PubMed ID: 23294550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance.
    Thompson C; Bélanger M; Fung J
    Hum Mov Sci; 2011 Apr; 30(2):153-71. PubMed ID: 20580112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses.
    Sayenko DG; Masani K; Vette AH; Alekhina MI; Popovic MR; Nakazawa K
    Gait Posture; 2012 Feb; 35(2):339-44. PubMed ID: 22118729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural steadiness and weight distribution during tandem stance in healthy young and elderly adults.
    Jonsson E; Seiger A; Hirschfeld H
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):202-8. PubMed ID: 15621326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural control during quiet standing following cervical muscular fatigue: effects of changes in sensory inputs.
    Vuillerme N; Pinsault N; Vaillant J
    Neurosci Lett; 2005 Apr; 378(3):135-9. PubMed ID: 15781146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plantar hypoesthesia alters time-to-boundary measures of postural control.
    McKeon PO; Hertel J
    Somatosens Mot Res; 2007 Dec; 24(4):171-7. PubMed ID: 18097990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance control in Sensory Neuron Disease.
    Nardone A; Galante M; Pareyson D; Schieppati M
    Clin Neurophysiol; 2007 Mar; 118(3):538-50. PubMed ID: 17224305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation and vision change the relationship between muscle activity of the lower limbs and body movement during human balance perturbations.
    Patel M; Gomez S; Lush D; Fransson PA
    Clin Neurophysiol; 2009 Mar; 120(3):601-9. PubMed ID: 19136294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in center-of-pressure dynamics during upright standing related to decreased balance control in young adults: fractional Brownian motion analysis.
    Tanaka H; Uetake T; Kuriki S; Ikeda S
    J Hum Ergol (Tokyo); 2002 Dec; 31(1-2):1-11. PubMed ID: 12908330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of equilibrium in Parkinson's disease patients: delayed adaptation of balancing strategy to shifts in sensory set during a dynamic task.
    De Nunzio AM; Nardone A; Schieppati M
    Brain Res Bull; 2007 Sep; 74(4):258-70. PubMed ID: 17720548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions.
    Wang Y; Zatsiorsky VM; Latash ML
    Clin Neurophysiol; 2006 Jan; 117(1):41-56. PubMed ID: 16364687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment of the plantar intrinsic foot muscles with increasing postural demand.
    Kelly LA; Kuitunen S; Racinais S; Cresswell AG
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):46-51. PubMed ID: 21864955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional demands associated with postural control depend on task difficulty and visual condition.
    Remaud A; Boyas S; Caron GA; Bilodeau M
    J Mot Behav; 2012; 44(5):329-40. PubMed ID: 22934664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of head position and visual condition on balance control in inverted stance.
    Asseman F; Gahéry Y
    Neurosci Lett; 2005 Feb; 375(2):134-7. PubMed ID: 15670656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance.
    Barbado Murillo D; Sabido Solana R; Vera-Garcia FJ; Gusi Fuertes N; Moreno FJ
    Hum Mov Sci; 2012 Oct; 31(5):1224-37. PubMed ID: 22658508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.