BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20728086)

  • 1. Foot forces during exercise on the International Space Station.
    Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ; Bowersox KD; Cavanagh PR
    J Biomech; 2010 Nov; 43(15):3020-7. PubMed ID: 20728086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foot forces during typical days on the international space station.
    Cavanagh PR; Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ
    J Biomech; 2010 Aug; 43(11):2182-8. PubMed ID: 20462584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity replacement during running in simulated microgravity.
    Genc KO; Mandes VE; Cavanagh PR
    Aviat Space Environ Med; 2006 Nov; 77(11):1117-24. PubMed ID: 17086763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion in simulated zero gravity: ground reaction forces.
    McCrory JL; Derr J; Cavanagh PR
    Aviat Space Environ Med; 2004 Mar; 75(3):203-10. PubMed ID: 15018286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion in simulated microgravity: gravity replacement loads.
    McCrory JL; Baron HA; Balkin S; Cavanagh PR
    Aviat Space Environ Med; 2002 Jul; 73(7):625-31. PubMed ID: 12137096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground reaction forces during treadmill running in microgravity.
    De Witt JK; Ploutz-Snyder LL
    J Biomech; 2014 Jul; 47(10):2339-47. PubMed ID: 24835563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for use on the International Space Station.
    McCrory JL; Lemmon DR; Sommer HJ; Prout B; Smith D; Korth DW; Lucero J; Greenisen M; Moore J; Kozlovskaya I; Pestov I; Stepansov V; Miyakinchenko Y; Cavanagh PR
    J Appl Biomech; 1999 Aug; 15(3):292-302. PubMed ID: 11541844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foot-ground reaction force during resistive exercise in parabolic flight.
    Lee SM; Cobb K; Loehr JA; Nguyen D; Schneider SM
    Aviat Space Environ Med; 2004 May; 75(5):405-12. PubMed ID: 15152892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical perspective on exercise countermeasures for long term spaceflight.
    Cavanagh PR; Davis BL; Miller TA
    Aviat Space Environ Med; 1992 Jun; 63(6):482-5. PubMed ID: 1520217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypergravity resistance exercise: the use of artificial gravity as potential countermeasure to microgravity.
    Yang Y; Baker M; Graf S; Larson J; Caiozzo VJ
    J Appl Physiol (1985); 2007 Nov; 103(5):1879-87. PubMed ID: 17872403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground reaction forces during locomotion in simulated microgravity.
    Davis BL; Cavanagh PR; Sommer HJ; Wu G
    Aviat Space Environ Med; 1996 Mar; 67(3):235-42. PubMed ID: 8775401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training with the International Space Station interim resistive exercise device.
    Schneider SM; Amonette WE; Blazine K; Bentley J; Lee SM; Loehr JA; Moore AD; Rapley M; Mulder ER; Smith SM
    Med Sci Sports Exerc; 2003 Nov; 35(11):1935-45. PubMed ID: 14600562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
    Gopalakrishnan R; Genc KO; Rice AJ; Lee SM; Evans HJ; Maender CC; Ilaslan H; Cavanagh PR
    Aviat Space Environ Med; 2010 Feb; 81(2):91-102. PubMed ID: 20131648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training.
    Yang Y; Kaplan A; Pierre M; Adams G; Cavanagh P; Takahashi C; Kreitenberg A; Hicks J; Keyak J; Caiozzo V
    Aviat Space Environ Med; 2007 Jan; 78(1):2-9. PubMed ID: 17225475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise in space: human skeletal muscle after 6 months aboard the International Space Station.
    Trappe S; Costill D; Gallagher P; Creer A; Peters JR; Evans H; Riley DA; Fitts RH
    J Appl Physiol (1985); 2009 Apr; 106(4):1159-68. PubMed ID: 19150852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of running in weightlessness on a treadmill equipped with a subject loading system.
    Gosseye TP; Willems PA; Heglund NC
    Eur J Appl Physiol; 2010 Nov; 110(4):709-28. PubMed ID: 20582597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "Space Cycle" Self Powered Human Centrifuge: a proposed countermeasure for prolonged human spaceflight.
    Kreitenberg A; Baldwin KM; Bagian JP; Cotten S; Witmer J; Caiozzo VJ
    Aviat Space Environ Med; 1998 Jan; 69(1):66-72. PubMed ID: 9451537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Prediction of Muscle Moments During ARED Squat Exercise on the International Space Station.
    Fregly BJ; Fregly CD; Kim BT
    J Biomech Eng; 2015 Dec; 137(12):121005. PubMed ID: 26473475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jumping in simulated and true microgravity: response to maximal efforts with three landing types.
    D'Andrea SE; Perusek GP; Rajulu S; Perry J; Davis BL
    Aviat Space Environ Med; 2005 May; 76(5):441-7. PubMed ID: 15892541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.