These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 20728320)
1. Utilization of adsorption technique in the development of oral delivery system of lipid based nanoparticles. Chakraborty S; Shukla D; Vuddanda PR; Mishra B; Singh S Colloids Surf B Biointerfaces; 2010 Dec; 81(2):563-9. PubMed ID: 20728320 [TBL] [Abstract][Full Text] [Related]
2. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Venishetty VK; Chede R; Komuravelli R; Adepu L; Sistla R; Diwan PV Colloids Surf B Biointerfaces; 2012 Jun; 95():1-9. PubMed ID: 22463845 [TBL] [Abstract][Full Text] [Related]
3. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Zhang Y; Zhi Z; Li X; Gao J; Song Y Int J Pharm; 2013 Sep; 454(1):403-11. PubMed ID: 23850816 [TBL] [Abstract][Full Text] [Related]
4. Development, Optimization, and Evaluation of Carvedilol-Loaded Solid Lipid Nanoparticles for Intranasal Drug Delivery. Aboud HM; El Komy MH; Ali AA; El Menshawe SF; Abd Elbary A AAPS PharmSciTech; 2016 Dec; 17(6):1353-1365. PubMed ID: 26743643 [TBL] [Abstract][Full Text] [Related]
5. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Dong Z; Xie S; Zhu L; Wang Y; Wang X; Zhou W Drug Deliv; 2011 Aug; 18(6):441-50. PubMed ID: 21554156 [TBL] [Abstract][Full Text] [Related]
6. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. Kalam MA; Sultana Y; Ali A; Aqil M; Mishra AK; Chuttani K J Drug Target; 2010 Apr; 18(3):191-204. PubMed ID: 19839712 [TBL] [Abstract][Full Text] [Related]
7. [Preparation of stearic acid solid lipid nanoparticles containing podophyllotoxin]. Xie FM; Zeng K; Li GF; Lin ZF; Sun LD Di Yi Jun Yi Da Xue Xue Bao; 2005 Jan; 25(1):99-101. PubMed ID: 15684011 [TBL] [Abstract][Full Text] [Related]
8. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Liu J; Gong T; Wang C; Zhong Z; Zhang Z Int J Pharm; 2007 Aug; 340(1-2):153-62. PubMed ID: 17428627 [TBL] [Abstract][Full Text] [Related]
9. Effective in-vivo utilization of lipid-based nanoparticles as drug carrier for carvedilol phosphate. Chakraborty S; Shukla D; Vuddanda PR; Mishra B; Singh S J Pharm Pharmacol; 2011 Jun; 63(6):774-9. PubMed ID: 21585374 [TBL] [Abstract][Full Text] [Related]
10. Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. Patil SB; Sawant KK J Microencapsul; 2009 Aug; 26(5):432-43. PubMed ID: 18932060 [TBL] [Abstract][Full Text] [Related]
11. Controlled delivery of carvedilol nanosuspension from osmotic pump capsule: in vitro and in vivo evaluation. Liu D; Yu S; Zhu Z; Lyu C; Bai C; Ge H; Yang X; Pan W Int J Pharm; 2014 Nov; 475(1-2):496-503. PubMed ID: 25219321 [TBL] [Abstract][Full Text] [Related]
12. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Singh B; Singh R; Bandyopadhyay S; Kapil R; Garg B Colloids Surf B Biointerfaces; 2013 Jan; 101():465-74. PubMed ID: 23010056 [TBL] [Abstract][Full Text] [Related]
13. Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug delivery system for poorly water-soluble drug carvedilol. Sun L; Wang Y; Jiang T; Zheng X; Zhang J; Sun J; Sun C; Wang S ACS Appl Mater Interfaces; 2013 Jan; 5(1):103-13. PubMed ID: 23237208 [TBL] [Abstract][Full Text] [Related]
14. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Rahman Z; Zidan AS; Khan MA Eur J Pharm Biopharm; 2010 Sep; 76(1):127-37. PubMed ID: 20470882 [TBL] [Abstract][Full Text] [Related]
15. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Garg A; Singh S Colloids Surf B Biointerfaces; 2011 Oct; 87(2):280-8. PubMed ID: 21689909 [TBL] [Abstract][Full Text] [Related]
16. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid. Attama AA; Müller-Goymann CC Int J Pharm; 2007 Apr; 334(1-2):179-89. PubMed ID: 17140752 [TBL] [Abstract][Full Text] [Related]
17. Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Abdelbary AA; Al-mahallawi AM; Abdelrahim ME; Ali AM Int J Nanomedicine; 2015; 10():6339-53. PubMed ID: 26491298 [TBL] [Abstract][Full Text] [Related]
18. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Yuan H; Jiang SP; Du YZ; Miao J; Zhang XG; Hu FQ Colloids Surf B Biointerfaces; 2009 May; 70(2):248-53. PubMed ID: 19185474 [TBL] [Abstract][Full Text] [Related]
19. [Preparation and characterization of solid lipid nanoparticles of norcantharidin]. Tian HY; Zhai GX Zhong Yao Cai; 2007 Sep; 30(9):1146-8. PubMed ID: 18236763 [TBL] [Abstract][Full Text] [Related]
20. Ternary complexation of carvedilol, beta-cyclodextrin and citric acid for mouth-dissolving tablet formulation. Pokharkar V; Khanna A; Venkatpurwar V; Dhar S; Mandpe L Acta Pharm; 2009 Jun; 59(2):121-32. PubMed ID: 19564138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]