These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Petty HR Microsc Res Tech; 2007 Aug; 70(8):687-709. PubMed ID: 17393476 [TBL] [Abstract][Full Text] [Related]
6. Nearest neighbor analysis of dopamine D1 receptors and Na(+)-K(+)-ATPases in dendritic spines dissected by STED microscopy. Blom H; Rönnlund D; Scott L; Spicarova Z; Rantanen V; Widengren J; Aperia A; Brismar H Microsc Res Tech; 2012 Feb; 75(2):220-8. PubMed ID: 21809413 [TBL] [Abstract][Full Text] [Related]
7. Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo. Ter Veer MJT; Pfeiffer T; Nägerl UV Methods Mol Biol; 2017; 1663():45-64. PubMed ID: 28924658 [TBL] [Abstract][Full Text] [Related]
8. From micro to nano: recent advances in high-resolution microscopy. Garini Y; Vermolen BJ; Young IT Curr Opin Biotechnol; 2005 Feb; 16(1):3-12. PubMed ID: 15722009 [TBL] [Abstract][Full Text] [Related]
9. Near-field optics: from subwavelength illumination to nanometric shadowing. Lewis A; Taha H; Strinkovski A; Manevitch A; Khatchatouriants A; Dekhter R; Ammann E Nat Biotechnol; 2003 Nov; 21(11):1378-86. PubMed ID: 14595366 [TBL] [Abstract][Full Text] [Related]
10. Chemical reporters for the illumination of protein and cell dynamics. Dieterich DC Curr Opin Neurobiol; 2010 Oct; 20(5):623-30. PubMed ID: 20650631 [TBL] [Abstract][Full Text] [Related]
11. Micro-scale and microfluidic devices for neurobiology. Taylor AM; Jeon NL Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175 [TBL] [Abstract][Full Text] [Related]
12. Nanoscopy in a living mouse brain. Berning S; Willig KI; Steffens H; Dibaj P; Hell SW Science; 2012 Feb; 335(6068):551. PubMed ID: 22301313 [TBL] [Abstract][Full Text] [Related]
13. Let there be light: zebrafish neurobiology and the optogenetic revolution. Wyart C; Del Bene F Rev Neurosci; 2011; 22(1):121-30. PubMed ID: 21615266 [TBL] [Abstract][Full Text] [Related]
14. Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function. Stutzmann G Microsc Microanal; 2008 Dec; 14(6):482-91. PubMed ID: 18986602 [TBL] [Abstract][Full Text] [Related]
15. Stimulated emission depletion (STED) imaging of dendritic spines in living hippocampal slices. Willig KI; Nägerl UV Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550296 [TBL] [Abstract][Full Text] [Related]
17. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068 [TBL] [Abstract][Full Text] [Related]
18. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Braet F; Wisse E; Bomans P; Frederik P; Geerts W; Koster A; Soon L; Ringer S Microsc Res Tech; 2007 Mar; 70(3):230-42. PubMed ID: 17279510 [TBL] [Abstract][Full Text] [Related]
19. Semi-automated reconstruction of neural circuits using electron microscopy. Chklovskii DB; Vitaladevuni S; Scheffer LK Curr Opin Neurobiol; 2010 Oct; 20(5):667-75. PubMed ID: 20833533 [TBL] [Abstract][Full Text] [Related]
20. Super-resolution STED microscopy in live brain tissue. Calovi S; Soria FN; Tønnesen J Neurobiol Dis; 2021 Aug; 156():105420. PubMed ID: 34102277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]