BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20728892)

  • 1. Wall shear over high degree stenoses pertinent to atherothrombosis.
    Bark DL; Ku DN
    J Biomech; 2010 Nov; 43(15):2970-7. PubMed ID: 20728892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of diagnostic guidewire catheter presence on translesional hemodynamic measurements across significant coronary artery stenoses.
    Banerjee RK; Back LH; Back MR
    Biorheology; 2003; 40(6):613-35. PubMed ID: 14610312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: a computational fluid dynamics study.
    Waniewski J; Kurowska W; Mizerski JK; Trykozko A; Nowiński K; Brzezińska-Rajszys G; Kościesza A
    Artif Organs; 2005 Aug; 29(8):642-50. PubMed ID: 16048481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow.
    Barstad RM; Orvim U; Hamers MJ; Tjønnfjord GE; Brosstad FR; Sakariassen KS
    Thromb Haemost; 1996 May; 75(5):827-32. PubMed ID: 8725731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions.
    Shanmugavelayudam SK; Rubenstein DA; Yin W
    J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation.
    Bark DL; Para AN; Ku DN
    Biotechnol Bioeng; 2012 Oct; 109(10):2642-50. PubMed ID: 22539078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: transient flow.
    Politis AK; Stavropoulos GP; Christolis MN; Panagopoulos PG; Vlachos NS; Markatos NC
    J Biomech; 2008; 41(1):25-39. PubMed ID: 17905256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DPIV prediction of flow induced platelet activation-comparison to numerical predictions.
    Raz S; Einav S; Alemu Y; Bluestein D
    Ann Biomed Eng; 2007 Apr; 35(4):493-504. PubMed ID: 17286206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen induced thrombus formation at the apex of eccentric stenoses--a time course study with non-anticoagulated human blood.
    Barstad RM; Kierulf P; Sakariassen KS
    Thromb Haemost; 1996 Apr; 75(4):685-92. PubMed ID: 8743200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets.
    Mailhac A; Badimon JJ; Fallon JT; Fernández-Ortiz A; Meyer B; Chesebro JH; Fuster V; Badimon L
    Circulation; 1994 Aug; 90(2):988-96. PubMed ID: 8044972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.