BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20728892)

  • 21. Controlling cardiac transport and plaque formation.
    Aronis Z; Raz S; Martinez EJ; Einav S
    Ann N Y Acad Sci; 2008 Mar; 1123():146-54. PubMed ID: 18375587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.
    Tian FB; Zhu L; Fok PW; Lu XY
    Comput Biol Med; 2013 Sep; 43(9):1098-113. PubMed ID: 23930803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of spiral blood flow in a model of arterial stenosis.
    Paul MC; Larman A
    Med Eng Phys; 2009 Nov; 31(9):1195-203. PubMed ID: 19674925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamics of ulcerated plaques: before and after.
    Cummins M; Rossmann JS
    J Biomech Eng; 2010 Oct; 132(10):104503. PubMed ID: 20887021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries.
    Javadzadegan A; Yong AS; Chang M; Ng AC; Yiannikas J; Ng MK; Behnia M; Kritharides L
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H559-66. PubMed ID: 23241317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thrombus formation on ruptured atherosclerotic plaques and rethrombosis on evolving thrombi.
    Badimon L; Chesebro JH; Badimon JJ
    Circulation; 1992 Dec; 86(6 Suppl):III74-85. PubMed ID: 1424053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of the axial wall strains induced by an arterial stenosis at peak flow.
    Doriot PA; Dorsaz PA
    Med Phys; 2005 Feb; 32(2):360-8. PubMed ID: 15789580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pulsatile blood flow on thrombosis potential with a step wall transition.
    Corbett SC; Ajdari A; Coskun AU; Nayeb-Hashemi H
    ASAIO J; 2010; 56(4):290-5. PubMed ID: 20508499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Guidewire flow obstruction effect on pressure drop-flow relationship in moderate coronary artery stenosis.
    Sinha Roy A; Back LH; Banerjee RK
    J Biomech; 2006; 39(5):853-64. PubMed ID: 16488224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel design of a noncylindric stent with beneficial effects on flow characteristics: an experimental and numerical flow study in an axisymmetric arterial model with sequential mild stenoses.
    Papaioannou TG; Christofidis CCh; Mathioulakis DS; Stefanadis CI
    Artif Organs; 2007 Aug; 31(8):627-38. PubMed ID: 17651118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis.
    Holme PA; Orvim U; Hamers MJ; Solum NO; Brosstad FR; Barstad RM; Sakariassen KS
    Arterioscler Thromb Vasc Biol; 1997 Apr; 17(4):646-53. PubMed ID: 9108776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between Reynolds number and eccentricity effect in stenosed artery models.
    Javadzadegan A; Shimizu Y; Behnia M; Ohta M
    Technol Health Care; 2013; 21(4):357-67. PubMed ID: 23949178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog.
    Banerjee RK; Back LH; Cho YI
    Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.
    Brunette J; Mongrain R; Laurier J; Galaz R; Tardif JC
    Med Eng Phys; 2008 Nov; 30(9):1193-200. PubMed ID: 18406195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of blood flow and platelet transport in pathological vessels.
    Einav S; Bluestein D
    Ann N Y Acad Sci; 2004 May; 1015():351-66. PubMed ID: 15201174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A boundary layer model for wall shear stress in arterial stenosis.
    Provenzano PP; Rutland CJ
    Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis.
    Strony J; Beaudoin A; Brands D; Adelman B
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1787-96. PubMed ID: 8238592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.