BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20729161)

  • 1. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training.
    Nielsen JL; Holmgaard S; Jiang N; Englehart KB; Farina D; Parker PA
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):681-8. PubMed ID: 20729161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous and proportional force estimation in multiple degrees of freedom from intramuscular EMG.
    Kamavuako EN; Englehart KB; Jensen W; Farina D
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1804-7. PubMed ID: 22562724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom.
    Muceli S; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):371-8. PubMed ID: 22180516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.
    Jiang N; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1070-80. PubMed ID: 19272889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training.
    Kamavuako EN; Farina D; Yoshida K; Jensen W
    Ann Biomed Eng; 2012 Mar; 40(3):648-56. PubMed ID: 22006428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding of individuated finger movements using surface electromyography.
    Tenore FV; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Eng; 2009 May; 56(5):1427-34. PubMed ID: 19473933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between force and position control strategies in myoelectric prostheses.
    Ameri A; Englehart KB; Parker PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1342-5. PubMed ID: 23366147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting force loss during dynamic fatiguing exercises from non-linear mapping of features of the surface electromyogram.
    Gonzalez-Izal M; Falla D; Izquierdo M; Farina D
    J Neurosci Methods; 2010 Jul; 190(2):271-8. PubMed ID: 20452376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
    Sebelius FC; Rosén BN; Lundborg GN
    J Hand Surg Am; 2005 Jul; 30(4):780-9. PubMed ID: 16039372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of surface EMG activation timing using a wavelet transform based method.
    Vannozzi G; Conforto S; D'Alessio T
    J Electromyogr Kinesiol; 2010 Aug; 20(4):767-72. PubMed ID: 20303286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of externally applied forces to human hands using frequency content of surface EMG signals.
    Arslan YZ; Adli MA; Akan A; Baslo MB
    Comput Methods Programs Biomed; 2010 Apr; 98(1):36-44. PubMed ID: 19762107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time pinch force estimation by surface electromyography using an artificial neural network.
    Choi C; Kwon S; Park W; Lee HD; Kim J
    Med Eng Phys; 2010 Jun; 32(5):429-36. PubMed ID: 20430679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface EMG in advanced hand prosthetics.
    Castellini C; van der Smagt P
    Biol Cybern; 2009 Jan; 100(1):35-47. PubMed ID: 19015872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):737-46. PubMed ID: 26302506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.