These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2072920)

  • 1. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
    Swanson MS; Malone EA; Winston F
    Mol Cell Biol; 1991 Aug; 11(8):4286. PubMed ID: 2072920
    [No Abstract]   [Full Text] [Related]  

  • 2. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
    Swanson MS; Malone EA; Winston F
    Mol Cell Biol; 1991 Jun; 11(6):3009-19. PubMed ID: 1840633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, sequencing, and mapping of the human homologue of the yeast transcription factor, SPT5.
    Chiang PW; Fogel E; Jackson CL; Lieuallen K; Lennon G; Qu X; Wang SQ; Kurnit DM
    Genomics; 1996 Dec; 38(3):421-4. PubMed ID: 8975720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus.
    Swanson MS; Carlson M; Winston F
    Mol Cell Biol; 1990 Sep; 10(9):4935-41. PubMed ID: 2201908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.
    Lindstrom DL; Hartzog GA
    Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae.
    Compagnone-Post PA; Osley MA
    Genetics; 1996 Aug; 143(4):1543-54. PubMed ID: 8844144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domains in the SPT5 protein that modulate its transcriptional regulatory properties.
    Ivanov D; Kwak YT; Guo J; Gaynor RB
    Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae.
    Swanson MS; Winston F
    Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae.
    Malone EA; Fassler JS; Winston F
    Mol Gen Genet; 1993 Mar; 237(3):449-59. PubMed ID: 8483459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5.
    Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J
    Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional silencing and lamins.
    Diffley JF; Stillman B
    Nature; 1989 Nov; 342(6245):24. PubMed ID: 2682256
    [No Abstract]   [Full Text] [Related]  

  • 14. The TPR snap helix: a novel protein repeat motif from mitosis to transcription.
    Goebl M; Yanagida M
    Trends Biochem Sci; 1991 May; 16(5):173-7. PubMed ID: 1882418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster.
    Kaplan CD; Morris JR; Wu C; Winston F
    Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae.
    Hartzog GA; Basrai MA; Ricupero-Hovasse SL; Hieter P; Winston F
    Mol Cell Biol; 1996 Jun; 16(6):2848-56. PubMed ID: 8649394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene.
    Chiang PW; Wang SQ; Smithivas P; Song WJ; Crombez E; Akhtar A; Im R; Greenfield J; Ramamoorthy S; Van Keuren M; Blackburn CC; Tsai CH; Kurnit DM
    Genomics; 1996 Jun; 34(3):368-75. PubMed ID: 8786137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evidence for a positive role of Spt4 in transcription elongation.
    Rondón AG; García-Rubio M; González-Barrera S; Aguilera A
    EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of murine SPT5 homologue: completion of the isolation and characterization of human and murine homologues of yeast chromatin structural protein complex SPT4, SPT5, and SPT6.
    Chiang PW; Stubbs L; Zhang L; Kurnit DM
    Genomics; 1998 Feb; 47(3):426-8. PubMed ID: 9480761
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.