BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20729380)

  • 1. The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis.
    Feraru E; Paciorek T; Feraru MI; Zwiewka M; De Groodt R; De Rycke R; Kleine-Vehn J; Friml J
    Plant Cell; 2010 Aug; 22(8):2812-24. PubMed ID: 20729380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis.
    Zwiewka M; Feraru E; Möller B; Hwang I; Feraru MI; Kleine-Vehn J; Weijers D; Friml J
    Cell Res; 2011 Dec; 21(12):1711-22. PubMed ID: 21670741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis.
    Nodzynski T; Feraru MI; Hirsch S; De Rycke R; Niculaes C; Boerjan W; Van Leene J; De Jaeger G; Vanneste S; Friml J
    Mol Plant; 2013 Nov; 6(6):1849-62. PubMed ID: 23770835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis.
    Lee Y; Jang M; Song K; Kang H; Lee MH; Lee DW; Zouhar J; Rojo E; Sohn EJ; Hwang I
    Plant Physiol; 2013 Jan; 161(1):121-33. PubMed ID: 23175753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ADAPTOR PROTEIN-3 Complex Mediates Pollen Tube Growth by Coordinating Vacuolar Targeting and Organization.
    Feng QN; Liang X; Li S; Zhang Y
    Plant Physiol; 2018 May; 177(1):216-225. PubMed ID: 29523712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth.
    Park M; Song K; Reichardt I; Kim H; Mayer U; Stierhof YD; Hwang I; Jürgens G
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10318-23. PubMed ID: 23733933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles.
    Niihama M; Takemoto N; Hashiguchi Y; Tasaka M; Morita MT
    Plant Cell Physiol; 2009 Dec; 50(12):2057-68. PubMed ID: 19884248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtCAP2 is crucial for lytic vacuole biogenesis during germination by positively regulating vacuolar protein trafficking.
    Kwon Y; Shen J; Lee MH; Geem KR; Jiang L; Hwang I
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1675-E1683. PubMed ID: 29378957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptor Protein-3-Dependent Vacuolar Trafficking Involves a Subpopulation of COPII and HOPS Tethering Proteins.
    Feng QN; Song SJ; Yu SX; Wang JG; Li S; Zhang Y
    Plant Physiol; 2017 Jul; 174(3):1609-1620. PubMed ID: 28559361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dominant-negative form of Arabidopsis AP-3 β-adaptin improves intracellular pH homeostasis.
    Niñoles R; Rubio L; García-Sánchez MJ; Fernández JA; Bueso E; Alejandro S; Serrano R
    Plant J; 2013 May; 74(4):557-68. PubMed ID: 23397991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole.
    Sohn EJ; Rojas-Pierce M; Pan S; Carter C; Serrano-Mislata A; Madueño F; Rojo E; Surpin M; Raikhel NV
    Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18801-6. PubMed ID: 18003908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1.
    Fuji K; Shirakawa M; Shimono Y; Kunieda T; Fukao Y; Koumoto Y; Takahashi H; Hara-Nishimura I; Shimada T
    Plant Physiol; 2016 Jan; 170(1):211-9. PubMed ID: 26546666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor.
    Kang H; Kim SY; Song K; Sohn EJ; Lee Y; Lee DW; Hara-Nishimura I; Hwang I
    Plant Cell; 2012 Dec; 24(12):5058-73. PubMed ID: 23263768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis.
    Kolb C; Nagel MK; Kalinowska K; Hagmann J; Ichikawa M; Anzenberger F; Alkofer A; Sato MH; Braun P; Isono E
    Plant Physiol; 2015 Apr; 167(4):1361-73. PubMed ID: 25699591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis.
    Sanmartín M; Ordóñez A; Sohn EJ; Robert S; Sánchez-Serrano JJ; Surpin MA; Raikhel NV; Rojo E
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3645-50. PubMed ID: 17360696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AP3M harbors actin filament binding activity that is crucial for vacuole morphology and stomatal closure in
    Zheng W; Jiang Y; Wang X; Huang S; Yuan M; Guo Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18132-18141. PubMed ID: 31431522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis.
    Viotti C; Krüger F; Krebs M; Neubert C; Fink F; Lupanga U; Scheuring D; Boutté Y; Frescatada-Rosa M; Wolfenstetter S; Sauer N; Hillmer S; Grebe M; Schumacher K
    Plant Cell; 2013 Sep; 25(9):3434-49. PubMed ID: 24014545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1.
    Song J; Lee MH; Lee GJ; Yoo CM; Hwang I
    Plant Cell; 2006 Sep; 18(9):2258-74. PubMed ID: 16905657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo.
    Foresti O; daSilva LL; Denecke J
    Plant Cell; 2006 Sep; 18(9):2275-93. PubMed ID: 16935987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis.
    Ichino T; Maeda K; Hara-Nishimura I; Shimada T
    J Exp Bot; 2020 Jul; 71(14):3999-4009. PubMed ID: 32201898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.