BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20729715)

  • 41. α2-Adrenoceptors are targets for antipsychotic drugs.
    Brosda J; Jantschak F; Pertz HH
    Psychopharmacology (Berl); 2014 Mar; 231(5):801-12. PubMed ID: 24488407
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Topiramate augments the antipsychotic-like effect and cortical dopamine output of raclopride.
    Eltayb A; Wadenberg ML; Schilström B; Svensson TH
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Nov; 372(3):195-202. PubMed ID: 16284783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo binding to dopamine receptors: a correlate of potential antipsychotic activity.
    McQuade RD; Duffy RA; Coffin VL; Barnett A
    Eur J Pharmacol; 1992 Apr; 215(1):29-34. PubMed ID: 1355442
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contrasting loxapine to its isomer isoloxapine--the critical role of in vivo D2 blockade in determining atypicality.
    Natesan S; Vanderspek S; Nobrega JN; McClelland RA; Kapur S
    Schizophr Res; 2005 Sep; 77(2-3):189-99. PubMed ID: 15925489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters.
    Telegdy G; Adamik Á
    Behav Brain Res; 2013 Apr; 243():300-5. PubMed ID: 23348107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dopamine on D2-like receptors is involved in reward evaluation in water-deprived rats licking for NaCl and water.
    Canu ME; Carta D; Murgia E; Serra G; D'Aquila PS
    Pharmacol Biochem Behav; 2010 Aug; 96(2):194-7. PubMed ID: 20460136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alpha 2-adrenoceptor antagonists potentiate acetylcholinesterase inhibitor effects on passive avoidance learning in the rat.
    Camacho F; Smith CP; Vargas HM; Winslow JT
    Psychopharmacology (Berl); 1996 Apr; 124(4):347-54. PubMed ID: 8739550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of dopaminergic agents on reversal of reserpine-induced impairment in conditioned avoidance response in rats.
    Nakagawa T; Ukai K; Ohyama T; Gomita Y; Okamura H
    Pharmacol Biochem Behav; 1997 Dec; 58(4):829-36. PubMed ID: 9408183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Block of conditioned avoidance responding in the rat by substituted phenylpiperazines.
    Martin GE; Elgin RJ; Kesslick JM; Baldy WJ; Mathiasen JR; Shank RP; Scott MK
    Eur J Pharmacol; 1988 Nov; 156(2):223-9. PubMed ID: 3240768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time course of the antipsychotic effect and the underlying behavioral mechanisms.
    Li M; Fletcher PJ; Kapur S
    Neuropsychopharmacology; 2007 Feb; 32(2):263-72. PubMed ID: 16738541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Positive modulation of glutamatergic receptors potentiates the suppressive effects of antipsychotics on conditioned avoidance responding in rats.
    Olsen CK; Kreilgaard M; Didriksen M
    Pharmacol Biochem Behav; 2006 Jun; 84(2):259-65. PubMed ID: 16782180
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel computer-controlled conditioned avoidance apparatus for rats.
    Wadenberg ML; Young KA; Trompler RA; Zavodny RA; Richter TJ; Hicks PB
    J Pharmacol Toxicol Methods; 1997 Dec; 38(4):211-5. PubMed ID: 9566445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics?
    Wadenberg ML; Hicks PB
    Neurosci Biobehav Rev; 1999; 23(6):851-62. PubMed ID: 10541060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N-aryl-N'-benzylpiperazines as potential antipsychotic agents.
    Reitz AB; Baxter EW; Bennett DJ; Codd EE; Jordan AD; Malloy EA; Maryanoff BE; McDonnell ME; Ortegon ME; Renzi MJ
    J Med Chem; 1995 Oct; 38(21):4211-22. PubMed ID: 7473548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Piperazinylalkyl heterocycles as potential antipsychotic agents.
    Scott MK; Baxter EW; Bennett DJ; Boyd RE; Blum PS; Codd EE; Kukla MJ; Malloy E; Maryanoff BE; Maryanoff CA
    J Med Chem; 1995 Oct; 38(21):4198-210. PubMed ID: 7473547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antipsychotic-like effect of the AMPA receptor antagonist LY326325 as indicated by suppression of conditioned avoidance response in the rat.
    Mathé JM; Fagerquist MV; Svensson TH
    J Neural Transm (Vienna); 1999; 106(9-10):1003-9. PubMed ID: 10599880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MK212, a 5-hydroxytryptamine 2C receptor agonist, inhibits conditioned avoidance responses independent of blocking endogenous dopamine release in rats.
    Wang X; Sun M; Gan L; Chen W
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 89():16-22. PubMed ID: 30145182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The adrenergic α2 antagonist atipamezole alters the behavioural effects of pramipexole and increases pramipexole concentration in blood plasma.
    McCormick PN; Fletcher PJ; Wilson VS; Remington GJ
    Life Sci; 2016 Apr; 151():300-304. PubMed ID: 26976325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potentiation of Glibenclamide Hypoglycaemia in Mice by MK-467, a Peripherally Acting Alpha2-Adrenoceptor Antagonist.
    Ruohonen ST; Ranta-Panula V; Bastman S; Chrusciel P; Scheinin M; Streng T
    Basic Clin Pharmacol Toxicol; 2015 Dec; 117(6):392-8. PubMed ID: 26132275
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conditioned avoidance response in the development of new antipsychotics.
    Wadenberg ML
    Curr Pharm Des; 2010 Jan; 16(3):358-70. PubMed ID: 20109144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.