BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20729845)

  • 1. Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation.
    Onishi A; Peng GH; Chen S; Blackshaw S
    Nat Neurosci; 2010 Sep; 13(9):1059-65. PubMed ID: 20729845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pias3-dependent SUMOylation directs rod photoreceptor development.
    Onishi A; Peng GH; Hsu C; Alexis U; Chen S; Blackshaw S
    Neuron; 2009 Jan; 61(2):234-46. PubMed ID: 19186166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina.
    Roberts MR; Hendrickson A; McGuire CR; Reh TA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2897-904. PubMed ID: 16043864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.
    Arbogast P; Glösmann M; Peichl L
    PLoS One; 2013; 8(11):e80910. PubMed ID: 24260509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pias3 is necessary for dorso-ventral patterning and visual response of retinal cones but is not required for rod photoreceptor differentiation.
    Campla CK; Breit H; Dong L; Gumerson JD; Roger JE; Swaroop A
    Biol Open; 2017 Jun; 6(6):881-890. PubMed ID: 28495965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development.
    Yanagi Y; Takezawa S; Kato S
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3489-94. PubMed ID: 12407160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO weighs in on a photoreceptor finish.
    LaBonne C
    Dev Cell; 2009 Feb; 16(2):165-6. PubMed ID: 19217419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina.
    Masuda T; Zhang X; Berlinicke C; Wan J; Yerrabelli A; Conner EA; Kjellstrom S; Bush R; Thorgeirsson SS; Swaroop A; Chen S; Zack DJ
    J Neurosci; 2014 Nov; 34(46):15356-68. PubMed ID: 25392503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina.
    Stenkamp DL; Barthel LK; Raymond PA
    J Comp Neurol; 1997 Jun; 382(2):272-84. PubMed ID: 9183694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.
    Simões BF; Sampaio FL; Loew ER; Sanders KL; Fisher RN; Hart NS; Hunt DM; Partridge JC; Gower DJ
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26817768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors.
    Suzuki SC; Bleckert A; Williams PR; Takechi M; Kawamura S; Wong RO
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):15109-14. PubMed ID: 23980162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid receptor-related orphan receptor alpha regulates a subset of cone genes during mouse retinal development.
    Fujieda H; Bremner R; Mears AJ; Sasaki H
    J Neurochem; 2009 Jan; 108(1):91-101. PubMed ID: 19014374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice.
    Lu A; Ng L; Ma M; Kefas B; Davies TF; Hernandez A; Chan CC; Forrest D
    Endocrinology; 2009 Mar; 150(3):1536-44. PubMed ID: 18974269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial patterning of mouse cone opsin expression is regulated by bone morphogenetic protein signaling through downstream effector COUP-TF nuclear receptors.
    Satoh S; Tang K; Iida A; Inoue M; Kodama T; Tsai SY; Tsai MJ; Furuta Y; Watanabe S
    J Neurosci; 2009 Oct; 29(40):12401-11. PubMed ID: 19812316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes.
    Peng GH; Ahmad O; Ahmad F; Liu J; Chen S
    Hum Mol Genet; 2005 Mar; 14(6):747-64. PubMed ID: 15689355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional co-regulation of evolutionarily conserved microRNA/cone opsin gene pairs: implications for photoreceptor subtype specification.
    Daido Y; Hamanishi S; Kusakabe TG
    Dev Biol; 2014 Aug; 392(1):117-29. PubMed ID: 24797636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes of cone opsin expression but not retinal morphology in the hypothyroid Pax8 knockout mouse.
    Glaschke A; Glösmann M; Peichl L
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1719-27. PubMed ID: 19834026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.