These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20729848)
21. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations. Kobayashi H; Kobayashi N; Hosoi S; Koshitani N; Murakami D; Shirasawa R; Kudo Y; Hobara D; Tokita Y; Itabashi M J Chem Phys; 2013 Jul; 139(1):014707. PubMed ID: 23822320 [TBL] [Abstract][Full Text] [Related]
22. Charge transport characteristics of a high-mobility diketopyrrolopyrrole-based polymer. Chung DS; Kang I; Kim YH; Kwon SK Phys Chem Chem Phys; 2013 Sep; 15(35):14777-82. PubMed ID: 23907664 [TBL] [Abstract][Full Text] [Related]
23. Quantum dot solids showing state-resolved band-like transport. Lan X; Chen M; Hudson MH; Kamysbayev V; Wang Y; Guyot-Sionnest P; Talapin DV Nat Mater; 2020 Mar; 19(3):323-329. PubMed ID: 31988516 [TBL] [Abstract][Full Text] [Related]
24. High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors. Liu T; Tang W; Luong S; Fenwick O Nanoscale; 2020 May; 12(17):9688-9695. PubMed ID: 32319990 [TBL] [Abstract][Full Text] [Related]
25. Excited State Properties of Hybrid Perovskites. Saba M; Quochi F; Mura A; Bongiovanni G Acc Chem Res; 2016 Jan; 49(1):166-73. PubMed ID: 26696363 [TBL] [Abstract][Full Text] [Related]
26. Analysis of External and Internal Disorder to Understand Band-Like Transport in n-Type Organic Semiconductors. Stoeckel MA; Olivier Y; Gobbi M; Dudenko D; Lemaur V; Zbiri M; Guilbert AAY; D'Avino G; Liscio F; Migliori A; Ortolani L; Demitri N; Jin X; Jeong YG; Liscio A; Nardi MV; Pasquali L; Razzari L; Beljonne D; Samorì P; Orgiu E Adv Mater; 2021 Apr; 33(13):e2007870. PubMed ID: 33629772 [TBL] [Abstract][Full Text] [Related]
27. Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Craciun NI; Wildeman J; Blom PW Phys Rev Lett; 2008 Feb; 100(5):056601. PubMed ID: 18352403 [TBL] [Abstract][Full Text] [Related]
28. Conduction band structure of high-mobility organic semiconductors and partially dressed polaron formation. Sato H; Abd Rahman SA; Yamada Y; Ishii H; Yoshida H Nat Mater; 2022 Aug; 21(8):910-916. PubMed ID: 35851148 [TBL] [Abstract][Full Text] [Related]
29. High-Mobility InSe Transistors: The Nature of Charge Transport. Tsai TH; Yang FS; Ho PH; Liang ZY; Lien CH; Ho CH; Lin YF; Chiu PW ACS Appl Mater Interfaces; 2019 Oct; 11(39):35969-35976. PubMed ID: 31532619 [TBL] [Abstract][Full Text] [Related]
30. Anharmonic Lattice Vibrations in Small-Molecule Organic Semiconductors. Asher M; Angerer D; Korobko R; Diskin-Posner Y; Egger DA; Yaffe O Adv Mater; 2020 Mar; 32(10):e1908028. PubMed ID: 32003507 [TBL] [Abstract][Full Text] [Related]
31. Intra- and inter-nanocrystal charge transport in nanocrystal films. Aigner W; Bienek O; Falcão BP; Ahmed SU; Wiggers H; Stutzmann M; Pereira RN Nanoscale; 2018 May; 10(17):8042-8057. PubMed ID: 29670986 [TBL] [Abstract][Full Text] [Related]
32. Low Temperature Solution-Processed Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors. Ha YG J Nanosci Nanotechnol; 2015 Sep; 15(9):6617-20. PubMed ID: 26716219 [TBL] [Abstract][Full Text] [Related]
33. Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures. Park B; Kim K; Park J; Lim H; Lanh PT; Jang AR; Hyun C; Myung CW; Park S; Kim JW; Kim KS; Shin HS; Lee G; Kim SH; Park CE; Kim JK ACS Appl Mater Interfaces; 2017 Aug; 9(33):27839-27846. PubMed ID: 28767219 [TBL] [Abstract][Full Text] [Related]
34. Bandlike motion and mobility saturation in organic molecular semiconductors. Fratini S; Ciuchi S Phys Rev Lett; 2009 Dec; 103(26):266601. PubMed ID: 20366327 [TBL] [Abstract][Full Text] [Related]
35. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride. Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290 [TBL] [Abstract][Full Text] [Related]
36. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Baeg KJ; Caironi M; Noh YY Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043 [TBL] [Abstract][Full Text] [Related]
37. Dynamic character of charge transport parameters in disordered organic semiconductor field-effect transistors. Chen Y; Lee B; Yi HT; Lee SS; Payne MM; Pola S; Kuo CH; Loo YL; Anthony JE; Tao YT; Podzorov V Phys Chem Chem Phys; 2012 Nov; 14(41):14142-51. PubMed ID: 22868385 [TBL] [Abstract][Full Text] [Related]
38. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule. Abdalla S; Obaid A; Al-Marzouki FM Nanoscale Res Lett; 2017 Dec; 12(1):316. PubMed ID: 28454482 [TBL] [Abstract][Full Text] [Related]
39. Entropy-ruled nonequilibrium charge transport in thiazolothiazole-based molecular crystals: a quantum chemical study. Pavalamuthu M; Navamani K Phys Chem Chem Phys; 2024 Jun; 26(23):16488-16504. PubMed ID: 38751327 [TBL] [Abstract][Full Text] [Related]
40. High-mobility pyrene-based semiconductor for organic thin-film transistors. Cho H; Lee S; Cho NS; Jabbour GE; Kwak J; Hwang DH; Lee C ACS Appl Mater Interfaces; 2013 May; 5(9):3855-60. PubMed ID: 23560572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]