These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20730117)

  • 1. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay.
    Zhu J; Li JJ; Wang AQ; Chen Y; Zhao JW
    Nanoscale Res Lett; 2010 Jun; 5(9):1496-1501. PubMed ID: 20730117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of gold nanoparticles on the fluorescence excitation spectrum of α-fetoprotein: local environment dependent fluorescence quenching.
    Li JJ; Chen Y; Wang AQ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):243-7. PubMed ID: 21084218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspect ratio dependent fluorescence quenching of eosin Y by gold nanorods.
    Weng G; Li J; Zhang L; Zhao J
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4072-7. PubMed ID: 24738353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II).
    Zhu J; Chang H; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():170-178. PubMed ID: 28709143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles.
    Ao L; Gao F; Pan B; He R; Cui D
    Anal Chem; 2006 Feb; 78(4):1104-6. PubMed ID: 16478100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects.
    Dulkeith E; Morteani AC; Niedereichholz T; Klar TA; Feldmann J; Levi SA; van Veggel FC; Reinhoudt DN; Möller M; Gittins DI
    Phys Rev Lett; 2002 Nov; 89(20):203002. PubMed ID: 12443474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers.
    Liao C; Tang L; Gao X; Xu R; Zhang H; Yu Y; Lu C; Cui Y; Zhang J
    Nanoscale; 2015 Dec; 7(48):20607-13. PubMed ID: 26592756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative investigation on the critical thickness of the dielectric shell for metallic nanoparticles determined by the plasmon decay length.
    Li A; Lim X; Guo L; Li S
    Nanotechnology; 2018 Apr; 29(16):165501. PubMed ID: 29424707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ellipsoidal core-shell dielectric-gold nanostructure: theoretical study of the tunable surface plasmon resonance.
    Zhu J
    J Nanosci Nanotechnol; 2007 Mar; 7(3):1059-64. PubMed ID: 17450875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the observability of surface plasmon in silica-gold raspberry shaped nanoparticles using cuprous oxide shell.
    Tyagi H; Mohapatra J; Kushwaha A; Aslam M
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12268-74. PubMed ID: 24237115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon enhanced fluorescence: self-consistent classical treatment in the quasi-static limit.
    Genov DA
    Methods Appl Fluoresc; 2023 Apr; 11(3):. PubMed ID: 37015232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artefact-free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles.
    Ribeiro T; Baleizão C; Farinha JPS
    Sci Rep; 2017 May; 7(1):2440. PubMed ID: 28550301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast detection of alpha-fetoprotein-L3 using lens culinaris agglutinin immobilized gold nanoparticles.
    Sun Y; Qin L; Liu D; Liu C; Sun Y; Duan Y
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4078-81. PubMed ID: 24738354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced electron transfer between chlorophyll a and gold nanoparticles.
    Barazzouk S; Kamat PV; Hotchandani S
    J Phys Chem B; 2005 Jan; 109(2):716-23. PubMed ID: 16866432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.