BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20730170)

  • 1. Graphitic carbon nitride as a metal-free catalyst for NO decomposition.
    Zhu J; Wei Y; Chen W; Zhao Z; Thomas A
    Chem Commun (Camb); 2010 Oct; 46(37):6965-7. PubMed ID: 20730170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic graphitic carbon nitride: its application in the C-H activation of amines.
    Verma S; Nasir Baig RB; Han C; Nadagouda MN; Varma RS
    Chem Commun (Camb); 2015 Nov; 51(85):15554-7. PubMed ID: 26352198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-free photocatalytic graphitic carbon nitride on p-type chalcopyrite as a composite photocathode for light-induced hydrogen evolution.
    Yang F; Lublow M; Orthmann S; Merschjann C; Tyborski T; Rusu M; Kubala S; Thomas A; Arrigo R; Hävecker M; Schedel-Niedrig T
    ChemSusChem; 2012 Jul; 5(7):1227-32. PubMed ID: 22707459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C(3)N(4)) as a bioinspired catalyst.
    Song T; Zhou B; Peng GW; Zhang QB; Wu LZ; Liu Q; Wang Y
    Chemistry; 2014 Jan; 20(3):678-82. PubMed ID: 24307535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst.
    Jin X; Balasubramanian VV; Selvan ST; Sawant DP; Chari MA; Lu GQ; Vinu A
    Angew Chem Int Ed Engl; 2009; 48(42):7884-7. PubMed ID: 19739172
    [No Abstract]   [Full Text] [Related]  

  • 7. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride.
    Bojdys MJ; Müller JO; Antonietti M; Thomas A
    Chemistry; 2008; 14(27):8177-82. PubMed ID: 18663712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst.
    Sun Y; Li C; Xu Y; Bai H; Yao Z; Shi G
    Chem Commun (Camb); 2010 Jul; 46(26):4740-2. PubMed ID: 20502842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-free heterogeneous catalysis for sustainable chemistry.
    Su DS; Zhang J; Frank B; Thomas A; Wang X; Paraknowitsch J; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):169-80. PubMed ID: 20127789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphitic carbon nitride: synthesis, properties, and applications in catalysis.
    Zhu J; Xiao P; Li H; Carabineiro SA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16449-65. PubMed ID: 25215903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis.
    Feng Y; Yao X; Wang M; Hu Z; Luo X; Wang HT; Zhang L
    J Chem Phys; 2013 Apr; 138(16):164706. PubMed ID: 23635164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry.
    Wang Y; Wang X; Antonietti M
    Angew Chem Int Ed Engl; 2012 Jan; 51(1):68-89. PubMed ID: 22109976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive theoretical study on the coupling reaction mechanism of propylene oxide with carbon dioxide catalyzed by copper(I) cyanomethyl.
    Guo CH; Wu HS; Zhang XM; Song JY; Zhang X
    J Phys Chem A; 2009 Jun; 113(24):6710-23. PubMed ID: 19469523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles.
    Liu J; Zhang Y; Lu L; Wu G; Chen W
    Chem Commun (Camb); 2012 Sep; 48(70):8826-8. PubMed ID: 22836817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride.
    Cui W; Li J; Dong F; Sun Y; Jiang G; Cen W; Lee SC; Wu Z
    Environ Sci Technol; 2017 Sep; 51(18):10682-10690. PubMed ID: 28817265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation and cleavage of the N-O bond in dinuclear mixed-metal nitrosyl systems and comparative analysis of carbon monoxide, dinitrogen, and nitric oxide activation.
    Cavigliasso G; Christian G; Stranger R; Yates BF
    Dalton Trans; 2009 Feb; (6):956-64. PubMed ID: 19173078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature destruction of carbon tetrachloride over lanthanide oxide-based catalysts: from destructive adsorption to a catalytic reaction cycle.
    Van der Avert P; Podkolzin SG; Manoilova O; de Winne H; Weckhuysen BM
    Chemistry; 2004 Apr; 10(7):1637-46. PubMed ID: 15054750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple nickel-based catalyst systems combined with graphitic carbon nitride for stable photocatalytic hydrogen production in water.
    Dong J; Wang M; Li X; Chen L; He Y; Sun L
    ChemSusChem; 2012 Nov; 5(11):2133-8. PubMed ID: 23112141
    [No Abstract]   [Full Text] [Related]  

  • 19. Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: insights from first principles.
    Stolbov S; Zuluaga S
    J Phys Condens Matter; 2013 Feb; 25(8):085507. PubMed ID: 23363533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers.
    Belokon YN; Clegg W; Harrington RW; Maleev VI; North M; Pujol MO; Usanov DL; Young C
    Chemistry; 2009; 15(9):2148-65. PubMed ID: 19145602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.