These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20730246)

  • 1. The quantification of hydrogen and methane in contaminated groundwater: validation of robust procedures for sampling and quantification.
    Dorgerloh U; Becker R; Theissen H; Nehls I
    J Environ Monit; 2010 Oct; 12(10):1876-84. PubMed ID: 20730246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized method for dissolved hydrogen sampling in groundwater.
    Alter MD; Steiof M
    J Contam Hydrol; 2005 Jun; 78(1-2):71-86. PubMed ID: 15949607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-well degassing issues for measurements of dissolved gases in groundwater.
    Roy JW; Ryan MC
    Ground Water; 2010; 48(6):869-77. PubMed ID: 20456503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?
    Rivard C; Bordeleau G; Lavoie D; Lefebvre R; Malet X
    Environ Monit Assess; 2018 Mar; 190(4):191. PubMed ID: 29508059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen as an indicator of mass transfer during in-situ gas sparging.
    Balcke GU; Hahn M; Oswald SE
    J Contam Hydrol; 2011 Sep; 126(1-2):8-18. PubMed ID: 21705108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany.
    Richter D; Massmann G; Taute T; Duennbier U
    J Contam Hydrol; 2009 May; 106(3-4):183-94. PubMed ID: 19371963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.
    Kujawinski DM; Stephan M; Jochmann MA; Krajenke K; Haas J; Schmidt TC
    J Environ Monit; 2010 Jan; 12(1):347-54. PubMed ID: 20082031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer.
    Takeuchi M; Nanba K; Iwamoto H; Nirei H; Kusuda T; Kazaoka O; Owaki M; Furuya K
    Water Res; 2005 Jun; 39(11):2438-44. PubMed ID: 15955544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.
    Heilweil VM; Stolp BJ; Kimball BA; Susong DD; Marston TM; Gardner PM
    Ground Water; 2013; 51(4):511-24. PubMed ID: 23758706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.
    Li H; Son JH; Carlson KH
    Water Res; 2016 Jan; 88():458-466. PubMed ID: 26519629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC-FID: method validation.
    Almeida CM; Boas LV
    J Environ Monit; 2004 Jan; 6(1):80-8. PubMed ID: 14737474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review.
    Hakala JA
    Environ Sci Process Impacts; 2014 Sep; 16(9):2080-6. PubMed ID: 25033440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.
    Li H; Carlson KH
    Environ Sci Technol; 2014; 48(3):1484-91. PubMed ID: 24456231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment.
    Cahill AG; Parker BL; Mayer B; Mayer KU; Cherry JA
    Sci Total Environ; 2018 May; 622-623():1178-1192. PubMed ID: 29890586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bromate analysis in groundwater and wastewater samples.
    Butler R; Lytton L; Godley AR; Tothill IE; Cartmell E
    J Environ Monit; 2005 Oct; 7(10):999-1006. PubMed ID: 16193172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards optimal sampling schedules for integral pumping tests.
    Leschik S; Bayer-Raich M; Musolff A; Schirmer M
    J Contam Hydrol; 2011 Jun; 124(1-4):25-34. PubMed ID: 21330001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.
    Amos RT; Ulrich Mayer K
    J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.
    Heilweil VM; Grieve PL; Hynek SA; Brantley SL; Solomon DK; Risser DW
    Environ Sci Technol; 2015 Apr; 49(7):4057-65. PubMed ID: 25786038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new design of groundwater sampling device and its application.
    Tsai YJ; Kuo MC
    J Environ Sci (China); 2005; 17(5):838-41. PubMed ID: 16313014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.