These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20730434)
1. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. Biler P; Corrias L; Dolbeault J J Math Biol; 2011 Jul; 63(1):1-32. PubMed ID: 20730434 [TBL] [Abstract][Full Text] [Related]
2. Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? Salako RB; Shen W; Xue S J Math Biol; 2019 Sep; 79(4):1455-1490. PubMed ID: 31324959 [TBL] [Abstract][Full Text] [Related]
3. Stable Singularity Formation for the Keller-Segel System in Three Dimensions. Glogić I; Schörkhuber B Arch Ration Mech Anal; 2024; 248(1):4. PubMed ID: 38188224 [TBL] [Abstract][Full Text] [Related]
4. A user's guide to PDE models for chemotaxis. Hillen T; Painter KJ J Math Biol; 2009 Jan; 58(1-2):183-217. PubMed ID: 18626644 [TBL] [Abstract][Full Text] [Related]
5. Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Zhang L; Ge Y; Wang Z Math Biosci Eng; 2022 May; 19(7):6764-6794. PubMed ID: 35730282 [TBL] [Abstract][Full Text] [Related]
6. On the existence of radially symmetric blow-up solutions for the Keller-Segel model. Horstmann D J Math Biol; 2002 May; 44(5):463-78. PubMed ID: 12021985 [TBL] [Abstract][Full Text] [Related]
7. Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations as an approximation to a detailed model. Sherratt JA Bull Math Biol; 1994 Jan; 56(1):129-46. PubMed ID: 8111316 [TBL] [Abstract][Full Text] [Related]
8. Traveling wave solutions from microscopic to macroscopic chemotaxis models. Lui R; Wang ZA J Math Biol; 2010 Nov; 61(5):739-61. PubMed ID: 20037760 [TBL] [Abstract][Full Text] [Related]
9. Instability in a generalized Keller-Segel model. De Leenheer P; Gopalakrishnan J; Zuhr E J Biol Dyn; 2012; 6():974-91. PubMed ID: 22881343 [TBL] [Abstract][Full Text] [Related]
10. Critical dynamics of self-gravitating Langevin particles and bacterial populations. Sire C; Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061111. PubMed ID: 19256806 [TBL] [Abstract][Full Text] [Related]
11. Global solutions of aggregation equations and other flows with random diffusion. Rosenzweig M; Staffilani G Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725 [TBL] [Abstract][Full Text] [Related]
12. Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Hwang S; Lee S; Hwang HJ Math Biosci Eng; 2021 Sep; 18(6):8524-8534. PubMed ID: 34814310 [TBL] [Abstract][Full Text] [Related]
13. A refined asymptotic result of one-dimensional flux limited Keller-Segel models. Xu X J Biol Dyn; 2023 Dec; 17(1):2203165. PubMed ID: 37074946 [TBL] [Abstract][Full Text] [Related]
14. From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model. Bubba F; Lorenzi T; Macfarlane FR Proc Math Phys Eng Sci; 2020 May; 476(2237):20190871. PubMed ID: 32523414 [TBL] [Abstract][Full Text] [Related]
15. The Impact of Phenotypic Heterogeneity on Chemotactic Self-Organisation. Macfarlane FR; Lorenzi T; Painter KJ Bull Math Biol; 2022 Nov; 84(12):143. PubMed ID: 36319913 [TBL] [Abstract][Full Text] [Related]
16. Finite time blow-up in some models of chemotaxis. Rascle M; Ziti C J Math Biol; 1995; 33(4):388-414. PubMed ID: 7714415 [TBL] [Abstract][Full Text] [Related]
17. Travelling waves in hyperbolic chemotaxis equations. Xue C; Hwang HJ; Painter KJ; Erban R Bull Math Biol; 2011 Aug; 73(8):1695-733. PubMed ID: 20953726 [TBL] [Abstract][Full Text] [Related]
18. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Phan TV; Mattingly HH; Vo L; Marvin JS; Looger LL; Emonet T Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2309251121. PubMed ID: 38194458 [TBL] [Abstract][Full Text] [Related]
19. Traveling wave solutions of a singular Keller-Segel system with logistic source. Li T; Wang ZA Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459 [TBL] [Abstract][Full Text] [Related]
20. A new interpretation of the Keller-Segel model based on multiphase modelling. Byrne HM; Owen MR J Math Biol; 2004 Dec; 49(6):604-26. PubMed ID: 15278292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]