These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20730614)

  • 1. A global analysis of the comparability of winter chill models for fruit and nut trees.
    Luedeling E; Brown PH
    Int J Biometeorol; 2011 May; 55(3):411-21. PubMed ID: 20730614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change affects winter chill for temperate fruit and nut trees.
    Luedeling E; Girvetz EH; Semenov MA; Brown PH
    PLoS One; 2011; 6(5):e20155. PubMed ID: 21629649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of chilling and heat requirements of cherry trees--a statistical approach.
    Luedeling E; Kunz A; Blanke MM
    Int J Biometeorol; 2013 Sep; 57(5):679-89. PubMed ID: 23053065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.
    Luedeling E; Zhang M; Girvetz EH
    PLoS One; 2009 Jul; 4(7):e6166. PubMed ID: 19606220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential vulnerability of Moroccan apple orchard to climate change-induced phenological perturbations: effects on yields and fruit quality.
    El Yaacoubi A; El Jaouhari N; Bourioug M; El Youssfi L; Cherroud S; Bouabid R; Chaoui M; Abouabdillah A
    Int J Biometeorol; 2020 Mar; 64(3):377-387. PubMed ID: 31773321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation.
    Campoy JA; Darbyshire R; Dirlewanger E; Quero-García J; Wenden B
    Int J Biometeorol; 2019 Feb; 63(2):183-192. PubMed ID: 30460433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China.
    Xu Y; Dai J; Ge Q; Wang H; Tao Z
    Int J Biometeorol; 2021 Mar; 65(3):393-403. PubMed ID: 32880063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chilling and heat requirements for flowering in temperate fruit trees.
    Guo L; Dai J; Ranjitkar S; Yu H; Xu J; Luedeling E
    Int J Biometeorol; 2014 Aug; 58(6):1195-206. PubMed ID: 23958788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of future warming on winter chilling in Australia.
    Darbyshire R; Webb L; Goodwin I; Barlow EW
    Int J Biometeorol; 2013 May; 57(3):355-66. PubMed ID: 22674019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change threatens central Tunisian nut orchards.
    Benmoussa H; Ben Mimoun M; Ghrab M; Luedeling E
    Int J Biometeorol; 2018 Dec; 62(12):2245-2255. PubMed ID: 30368676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subseasonal prediction for bloom dates of tart cherries in Utah and Michigan, USA: merging phenological models with CFSv2 forecast.
    Promchote P; Wang SS; Black B; Johnson PG
    Int J Biometeorol; 2020 Dec; 64(12):2141-2152. PubMed ID: 32860107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives on the adaptation of Japanese plum-type cultivars to reduced winter chilling in two regions of Spain.
    Guerrero BI; Fadón E; Guerra ME; Rodrigo J
    Front Plant Sci; 2024; 15():1343593. PubMed ID: 38693925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic suitability projection for deciduous fruit tree cultivation in main producing regions of northern China under climate warming.
    Sun W; Gao Y; Ren R; Wang J; Wang L; Liu X; Liu Y; Jiu S; Wang S; Zhang C
    Int J Biometeorol; 2022 Oct; 66(10):1997-2008. PubMed ID: 35902391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of large-scale teleconnection indices on chill accumulation for specialty crops in California.
    Zhang N; Pathak TB; Parker LE; Ostoja SM
    Sci Total Environ; 2021 Oct; 791():148025. PubMed ID: 34119792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach to the determination of winter chill requirements for different Ribes cultivars.
    Jones HG; Hillis RM; Gordon SL; Brennan RM
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():18-27. PubMed ID: 22512943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).
    Kumar G; Rattan UK; Singh AK
    PLoS One; 2016; 11(2):e0149934. PubMed ID: 26901339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds.
    Pope KS; Dose V; Da Silva D; Brown PH; DeJong TM
    Int J Biometeorol; 2015 Jun; 59(6):707-15. PubMed ID: 25119825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region.
    Yang Y; Wu Z; Guo L; He HS; Ling Y; Wang L; Zong S; Na R; Du H; Li MH
    Sci Total Environ; 2020 Jul; 725():138323. PubMed ID: 32298892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Chill and Heat Exposures under Diverse Climatic Conditions on Peach and Nectarine Flowering Phenology.
    Drogoudi P; Cantín CM; Brandi F; Butcaru A; Cos-Terrer J; Cutuli M; Foschi S; Galindo A; García-Brunton J; Luedeling E; Moreno MA; Nari D; Pantelidis G; Reig G; Roera V; Ruesch J; Stanica F; Giovannini D
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.