These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 20730755)
21. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Arai T; Kosugi A; Chan H; Koukiekolo R; Yukawa H; Inui M; Doi RH Appl Microbiol Biotechnol; 2006 Aug; 71(5):654-60. PubMed ID: 16532315 [TBL] [Abstract][Full Text] [Related]
22. Improvement of alkali solubility of cellulose with enzymatic treatment. Cao Y; Tan H Appl Microbiol Biotechnol; 2006 Mar; 70(2):176-82. PubMed ID: 16059687 [TBL] [Abstract][Full Text] [Related]
23. A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood. Mutjé P; Pèlach MA; Vilaseca F; García JC; Jiménez L Bioresour Technol; 2005 Jul; 96(10):1125-9. PubMed ID: 15683902 [TBL] [Abstract][Full Text] [Related]
24. Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cellulomonas flavigena. Mejia-Castillo T; Hidalgo-Lara ME; Brieba LG; Ortega-Lopez J Biotechnol Lett; 2008 Apr; 30(4):681-7. PubMed ID: 17985078 [TBL] [Abstract][Full Text] [Related]
25. Cel9D, an atypical 1,4-beta-D-glucan glucohydrolase from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases. Qi M; Jun HS; Forsberg CW J Bacteriol; 2008 Mar; 190(6):1976-84. PubMed ID: 18203823 [TBL] [Abstract][Full Text] [Related]
26. [Ability of cellulases to degrade crystalline cellulose as a result of their effective adsorption on the substrate: experimental confirmation and theoretical interpretation]. Klësov AA; Chernoglazov VM; Rabinovich ML; Glazov MV; Adamenkova MD Biokhimiia; 1983 Sep; 48(9):1411-20. PubMed ID: 6626602 [TBL] [Abstract][Full Text] [Related]
27. Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties. Przybysz Buzała K; Przybysz P; Kalinowska H; Derkowska M PLoS One; 2016; 11(8):e0161575. PubMed ID: 27557079 [TBL] [Abstract][Full Text] [Related]
28. Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Schubot FD; Kataeva IA; Chang J; Shah AK; Ljungdahl LG; Rose JP; Wang BC Biochemistry; 2004 Feb; 43(5):1163-70. PubMed ID: 14756552 [TBL] [Abstract][Full Text] [Related]
29. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Hildén L; Johansson G Biotechnol Lett; 2004 Nov; 26(22):1683-93. PubMed ID: 15604820 [TBL] [Abstract][Full Text] [Related]
30. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885 [TBL] [Abstract][Full Text] [Related]
32. Changes in the activity of the multifunctional beta-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Cho KM; Math RK; Hong SY; Asraful Islam SM; Kim JO; Hong SJ; Kim H; Yun HD Biotechnol Lett; 2008 Jun; 30(6):1061-8. PubMed ID: 18224282 [TBL] [Abstract][Full Text] [Related]
33. Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization. Kostylev M; Moran-Mirabal JM; Walker LP; Wilson DB Biotechnol Bioeng; 2012 Jan; 109(1):295-9. PubMed ID: 21837665 [TBL] [Abstract][Full Text] [Related]
34. Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases. Picart P; Diaz P; Pastor FI Antonie Van Leeuwenhoek; 2008 Aug; 94(2):307-16. PubMed ID: 18454347 [TBL] [Abstract][Full Text] [Related]
35. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975 [TBL] [Abstract][Full Text] [Related]
36. [Adsorption of cellulolytic enzymes on cellulose and the kinetics of the adsorbed enzymes. Two modes for interaction of the enzymes with the insoluble substrate]. Rabinovich ML; Nguen VV; Klesov AA Biokhimiia; 1982 Mar; 47(3):465-77. PubMed ID: 7074173 [TBL] [Abstract][Full Text] [Related]
37. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. Devillard E; Goodheart DB; Karnati SK; Bayer EA; Lamed R; Miron J; Nelson KE; Morrison M J Bacteriol; 2004 Jan; 186(1):136-45. PubMed ID: 14679233 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy. Moran-Mirabal JM; Santhanam N; Corgie SC; Craighead HG; Walker LP Biotechnol Bioeng; 2008 Dec; 101(6):1129-41. PubMed ID: 18563846 [TBL] [Abstract][Full Text] [Related]
39. Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii. Kang HJ; Ishikawa K J Microbiol Biotechnol; 2007 Aug; 17(8):1249-53. PubMed ID: 18051592 [TBL] [Abstract][Full Text] [Related]
40. Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. van Wyk N; den Haan R; van Zyl WH Appl Microbiol Biotechnol; 2010 Aug; 87(5):1813-20. PubMed ID: 20449742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]