BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20730765)

  • 1. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N.
    Hongo-Hirasaki T; Komuro M; Ide S
    Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions.
    Hongo-Hirasaki T; Yamaguchi K; Yanagida K; Hayashida H; Ide S
    Biotechnol Prog; 2011; 27(1):162-9. PubMed ID: 21312364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.
    Bolton GR; Basha J; Lacasse DP
    Biotechnol Prog; 2010; 26(6):1671-7. PubMed ID: 20859931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter.
    Brady-Estévez AS; Nguyen TH; Gutierrez L; Elimelech M
    Water Res; 2010 Jul; 44(13):3773-80. PubMed ID: 20569966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiwalled carbon nanotube filter: improving viral removal at low pressure.
    Brady-Estévez AS; Schnoor MH; Vecitis CD; Saleh NB; Elimelech M
    Langmuir; 2010 Sep; 26(18):14975-82. PubMed ID: 20795662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX.
    Hashikawa-Muto C; Yokoyama Y; Hamamoto R; Kobayashi K; Masuda Y; Nonaka K
    Biotechnol Prog; 2024; 40(2):e3420. PubMed ID: 38146091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of virus through novel membrane filtration method.
    Manabe S
    Dev Biol Stand; 1996; 88():81-90. PubMed ID: 9119166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives.
    Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN
    Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions.
    Roberts PL; Feldman P; Crombie D; Walker C; Lowery K
    Biologicals; 2010 Mar; 38(2):303-10. PubMed ID: 20089418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal.
    Strauss D; Goldstein J; Hongo-Hirasaki T; Yokoyama Y; Hirotomi N; Miyabayashi T; Vacante D
    Biotechnol Prog; 2017 Sep; 33(5):1294-1302. PubMed ID: 28556575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of small non-enveloped viruses by nanofiltration.
    Yokoyama T; Murai K; Murozuka T; Wakisaka A; Tanifuji M; Fujii N; Tomono T
    Vox Sang; 2004 May; 86(4):225-9. PubMed ID: 15144526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance.
    Hamamoto R; Ito H; Hirohara M; Chang R; Hongo-Hirasaki T; Hayashi T
    Biotechnol Prog; 2018 Mar; 34(2):379-386. PubMed ID: 29193824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.
    Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C
    Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of solution conditions on virus retention by the Viresolve® NFP filter.
    Dishari SK; Micklin MR; Sung KJ; Zydney AL; Venkiteshwaran A; Earley JN
    Biotechnol Prog; 2015; 31(5):1280-6. PubMed ID: 26081350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters.
    Prado OJ; Veiga MC; Kennes C
    J Hazard Mater; 2006 Dec; 138(3):543-8. PubMed ID: 16839667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data.
    Gröner A
    Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a 20-nm pore-size filter in the plasma-derived factor VIII manufacturing process.
    Furuya K; Murai K; Yokoyama T; Maeno H; Takeda Y; Murozuka T; Wakisaka A; Tanifuji M; Tomono T
    Vox Sang; 2006 Aug; 91(2):119-25. PubMed ID: 16907872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.