These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 20730765)
1. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N. Hongo-Hirasaki T; Komuro M; Ide S Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765 [TBL] [Abstract][Full Text] [Related]
2. Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions. Hongo-Hirasaki T; Yamaguchi K; Yanagida K; Hayashida H; Ide S Biotechnol Prog; 2011; 27(1):162-9. PubMed ID: 21312364 [TBL] [Abstract][Full Text] [Related]
3. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters. Bolton GR; Basha J; Lacasse DP Biotechnol Prog; 2010; 26(6):1671-7. PubMed ID: 20859931 [TBL] [Abstract][Full Text] [Related]
4. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Brady-Estévez AS; Nguyen TH; Gutierrez L; Elimelech M Water Res; 2010 Jul; 44(13):3773-80. PubMed ID: 20569966 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX. Hashikawa-Muto C; Yokoyama Y; Hamamoto R; Kobayashi K; Masuda Y; Nonaka K Biotechnol Prog; 2024; 40(2):e3420. PubMed ID: 38146091 [TBL] [Abstract][Full Text] [Related]
7. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed. Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945 [TBL] [Abstract][Full Text] [Related]
8. Removal of virus through novel membrane filtration method. Manabe S Dev Biol Stand; 1996; 88():81-90. PubMed ID: 9119166 [TBL] [Abstract][Full Text] [Related]
10. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives. Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561 [TBL] [Abstract][Full Text] [Related]
11. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions. Roberts PL; Feldman P; Crombie D; Walker C; Lowery K Biologicals; 2010 Mar; 38(2):303-10. PubMed ID: 20089418 [TBL] [Abstract][Full Text] [Related]
12. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal. Strauss D; Goldstein J; Hongo-Hirasaki T; Yokoyama Y; Hirotomi N; Miyabayashi T; Vacante D Biotechnol Prog; 2017 Sep; 33(5):1294-1302. PubMed ID: 28556575 [TBL] [Abstract][Full Text] [Related]
13. Removal of small non-enveloped viruses by nanofiltration. Yokoyama T; Murai K; Murozuka T; Wakisaka A; Tanifuji M; Fujii N; Tomono T Vox Sang; 2004 May; 86(4):225-9. PubMed ID: 15144526 [TBL] [Abstract][Full Text] [Related]
14. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance. Hamamoto R; Ito H; Hirohara M; Chang R; Hongo-Hirasaki T; Hayashi T Biotechnol Prog; 2018 Mar; 34(2):379-386. PubMed ID: 29193824 [TBL] [Abstract][Full Text] [Related]
15. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration. Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510 [TBL] [Abstract][Full Text] [Related]
16. Effects of solution conditions on virus retention by the Viresolve® NFP filter. Dishari SK; Micklin MR; Sung KJ; Zydney AL; Venkiteshwaran A; Earley JN Biotechnol Prog; 2015; 31(5):1280-6. PubMed ID: 26081350 [TBL] [Abstract][Full Text] [Related]
17. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters. Prado OJ; Veiga MC; Kennes C J Hazard Mater; 2006 Dec; 138(3):543-8. PubMed ID: 16839667 [TBL] [Abstract][Full Text] [Related]
18. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data. Gröner A Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214 [TBL] [Abstract][Full Text] [Related]
19. Implementation of a 20-nm pore-size filter in the plasma-derived factor VIII manufacturing process. Furuya K; Murai K; Yokoyama T; Maeno H; Takeda Y; Murozuka T; Wakisaka A; Tanifuji M; Tomono T Vox Sang; 2006 Aug; 91(2):119-25. PubMed ID: 16907872 [TBL] [Abstract][Full Text] [Related]
20. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus. Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]