These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 20730823)
1. Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Kallesøe C; Wen CY; Mølhave K; Bøggild P; Ross FM Small; 2010 Sep; 6(18):2058-64. PubMed ID: 20730823 [TBL] [Abstract][Full Text] [Related]
2. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133 [TBL] [Abstract][Full Text] [Related]
3. Nanostructural transformation and formation of heterojunctions from Si nanowires. Wong TL; Cheng C; Li W; Fung KK; Wang N ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917 [TBL] [Abstract][Full Text] [Related]
4. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Peng K; Xu Y; Wu Y; Yan Y; Lee ST; Zhu J Small; 2005 Nov; 1(11):1062-7. PubMed ID: 17193395 [No Abstract] [Full Text] [Related]
5. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes. Hu J; Jiang Y; Meng X; Lee CS; Lee ST Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468 [TBL] [Abstract][Full Text] [Related]
6. Vapor-liquid-solid growth of silicon nanowires using organosilane as precursor. Yang HJ; Yuan FW; Tuan HY Chem Commun (Camb); 2010 Sep; 46(33):6105-7. PubMed ID: 20657918 [TBL] [Abstract][Full Text] [Related]
7. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423 [TBL] [Abstract][Full Text] [Related]
8. Kinetic measurements from in situ TEM observations. Sharma R Microsc Res Tech; 2009 Mar; 72(3):144-52. PubMed ID: 19130611 [TBL] [Abstract][Full Text] [Related]
9. High-quality ZnO nanowire arrays directly fabricated from photoresists. Cheng C; Lei M; Feng L; Wong TL; Ho KM; Fung KK; Loy MM; Yu D; Wang N ACS Nano; 2009 Jan; 3(1):53-8. PubMed ID: 19206248 [TBL] [Abstract][Full Text] [Related]
10. Probing the local temperature by in situ electron microscopy on a heated Si(3)N(4) membrane. Reguer A; Bedu F; Nitsche S; Chaudanson D; Detailleur B; Dallaporta H Ultramicroscopy; 2009 Dec; 110(1):61-6. PubMed ID: 19828252 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of suspended silicon nanowire arrays. Lee KN; Jung SW; Shin KS; Kim WH; Lee MH; Seong WK Small; 2008 May; 4(5):642-8. PubMed ID: 18431721 [TBL] [Abstract][Full Text] [Related]
12. In situ TEM creation and electrical characterization of nanowire devices. Kallesøe C; Wen CY; Booth TJ; Hansen O; Bøggild P; Ross FM; Mølhave K Nano Lett; 2012 Jun; 12(6):2965-70. PubMed ID: 22545629 [TBL] [Abstract][Full Text] [Related]
13. A 100 nanometer scale resistive heater-thermometer on a silicon cantilever. Dai Z; King WP; Park K Nanotechnology; 2009 Mar; 20(9):095301. PubMed ID: 19417484 [TBL] [Abstract][Full Text] [Related]
14. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties. Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615 [TBL] [Abstract][Full Text] [Related]
16. A technique for microsecond heating and cooling of a thin (submicron) biological sample. Steel BC; Bilek MM; McKenzie DR; dos Remedios CG Eur Biophys J; 2002 Sep; 31(5):378-82. PubMed ID: 12202914 [TBL] [Abstract][Full Text] [Related]
17. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires. Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires. Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841 [TBL] [Abstract][Full Text] [Related]
19. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Shimpi P; Gao PX; Goberman DG; Ding Y Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]