BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20730848)

  • 1. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ optical studies of solid-oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():151-74. PubMed ID: 20636038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing and mapping electrode surfaces in solid oxide fuel cells.
    Blinn KS; Li X; Liu M; Bottomley LA; Liu M
    J Vis Exp; 2012 Sep; (67):e50161. PubMed ID: 23023264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.
    Zhang Z; Martin J; Wu J; Wang H; Promislow K; Balcom BJ
    J Magn Reson; 2008 Aug; 193(2):259-66. PubMed ID: 18555714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan biopolymer for fuel cell applications.
    Ma J; Sahai Y
    Carbohydr Polym; 2013 Feb; 92(2):955-75. PubMed ID: 23399116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance analysis of bio-fuel cell electrodes.
    Ouitrakul S; Sriyudthsak M; Charojrochkul S; Kakizono T
    Biosens Bioelectron; 2007 Dec; 23(5):721-7. PubMed ID: 17897820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.
    Hess KC; Epting WK; Litster S
    Anal Chem; 2011 Dec; 83(24):9492-8. PubMed ID: 22040011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ X-ray spectromicroscopy investigation of the material stability of SOFC metal interconnects in operating electrochemical cells.
    Bozzini B; Tondo E; Prasciolu M; Amati M; Abyaneh MK; Gregoratti L; Kiskinova M
    ChemSusChem; 2011 Aug; 4(8):1099-103. PubMed ID: 21695791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering porous materials for fuel cell applications.
    Brandon NP; Brett DJ
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):147-59. PubMed ID: 18272457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell.
    Adams LA; Poynton SD; Tamain C; Slade RC; Varcoe JR
    ChemSusChem; 2008; 1(1-2):79-81. PubMed ID: 18605667
    [No Abstract]   [Full Text] [Related]  

  • 15. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of anion exchange ionomers in hybrid polymer electrolyte fuel cells.
    Unlü M; Zhou J; Anestis-Richard I; Kohl PA
    ChemSusChem; 2010 Dec; 3(12):1398-402. PubMed ID: 21069660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance microimaging investigation of membrane electrode assembly of fuel cells: morphology and solvent dynamics.
    Wu Z; Wu CS; Chu PP; Ding S
    Magn Reson Imaging; 2009 Jul; 27(6):871-8. PubMed ID: 19106022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of anode microstructure on solid oxide fuel cells.
    Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M
    Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.