These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20730848)

  • 21. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries.
    Burba CM; Frech R
    Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode.
    Li Y; Luo ZY; Yu CJ; Luo D; Xu ZA; Cen KF
    J Zhejiang Univ Sci B; 2005 Nov; 6(11):1124-9. PubMed ID: 16252348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic synthesis of neutral hydrogen peroxide at a CoN2Cx cathode of a polymer electrolyte membrane fuel cell (PEMFC).
    Yamanaka I; Tazawa S; Murayama T; Iwasaki T; Takenaka S
    ChemSusChem; 2010; 3(1):59-62. PubMed ID: 19918834
    [No Abstract]   [Full Text] [Related]  

  • 25. Perspectives on the metallic interconnects for solid oxide fuel cells.
    Zhu WZ; Yan M
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1471-503. PubMed ID: 15547954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.
    Bozzini B; Gianoncelli A; Kaulich B; Kiskinova M; Prasciolu M; Sgura I
    ChemSusChem; 2010 Jul; 3(7):846-50. PubMed ID: 20564283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct in situ probe of electrochemical processes in operating fuel cells.
    Nonnenmann SS; Kungas R; Vohs J; Bonnell DA
    ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.
    Jiang R
    Rev Sci Instrum; 2007 Jul; 78(7):072209. PubMed ID: 17672740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.
    Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.
    Jiang R; Rong C; Chu D
    J Comb Chem; 2005; 7(2):272-8. PubMed ID: 15762756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4,5-dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells.
    Subbaraman R; Ghassemi H; Zawodzinski TA
    J Am Chem Soc; 2007 Feb; 129(8):2238-9. PubMed ID: 17266308
    [No Abstract]   [Full Text] [Related]  

  • 34. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new anode for solid oxide fuel cells with enhanced OCV under methane operation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Núñez P; Zhou W; Irvine JT
    Phys Chem Chem Phys; 2007 Apr; 9(15):1821-30. PubMed ID: 17415494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in the high performance polymer electrolyte membranes for fuel cells.
    Zhang H; Shen PK
    Chem Soc Rev; 2012 Mar; 41(6):2382-94. PubMed ID: 22222889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study on electric conductivity of phosphoric acid supported on nano-pore rice husk silica in H2/Pt/H3PO4 / RHS/Pt/O2 fuel cells.
    Hwang MJ; Lee SY; Han CS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3491-3. PubMed ID: 17252796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.
    Ogawa K; Sasaki T; Yoneda S; Tsujinaka K; Asai R
    Magn Reson Imaging; 2018 Sep; 51():163-172. PubMed ID: 29778692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.