BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20730867)

  • 61. Structural and functional roles of cytoskeletal proteins during repair of native guinea pig intestinal epithelium.
    Albers TM; Lomakina I; Moore RP
    Cell Biol Int; 1996 Dec; 20(12):821-30. PubMed ID: 9032942
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of the disassembly/assembly of the membrane skeleton in Madin-Darby canine kidney cells.
    Huotari V; Vaaraniemi J; Lehto VP; Eskelinen S
    J Cell Physiol; 1996 Apr; 167(1):121-30. PubMed ID: 8698829
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modelling cortical cataractogenesis. XXIX. Calpain proteolysis of lens fodrin in cataract.
    Kilic F; Trevithick JR
    Biochem Mol Biol Int; 1998 Aug; 45(5):963-78. PubMed ID: 9739461
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Actin is a major structural and functional element of the egg cortex of giant silkmoths during oogenesis.
    Watson CA; Sauman I; Berry SJ
    Dev Biol; 1993 Feb; 155(2):315-23. PubMed ID: 8432390
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers.
    Kueh HY; Charras GT; Mitchison TJ; Brieher WM
    J Cell Biol; 2008 Jul; 182(2):341-53. PubMed ID: 18663144
    [TBL] [Abstract][Full Text] [Related]  

  • 66. On the role of microfilaments in cell-shape-mediated growth control of lens epithelial cells.
    Iwig M; Glaesser D
    Cell Tissue Kinet; 1985 Mar; 18(2):169-82. PubMed ID: 4038627
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way.
    Kim M; Song K; Jin EJ; Sonn J
    Exp Mol Med; 2012 Sep; 44(9):521-8. PubMed ID: 22684244
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The lens actin filament cytoskeleton: Diverse structures for complex functions.
    Cheng C; Nowak RB; Fowler VM
    Exp Eye Res; 2017 Mar; 156():58-71. PubMed ID: 26971460
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Impairing actin filament or syndapin functions promotes accumulation of clathrin-coated vesicles at the apical plasma membrane of acinar epithelial cells.
    Da Costa SR; Sou E; Xie J; Yarber FA; Okamoto CT; Pidgeon M; Kessels MM; Mircheff AK; Schechter JE; Qualmann B; Hamm-Alvarez SF
    Mol Biol Cell; 2003 Nov; 14(11):4397-413. PubMed ID: 12937279
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rho signaling pathway and apical constriction in the early lens placode.
    Borges RM; Lamers ML; Forti FL; Santos MF; Yan CY
    Genesis; 2011 May; 49(5):368-79. PubMed ID: 21309072
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The intermediate filament cytoskeleton of the lens: an ever changing network through development and differentiation. A minireview.
    Prescott AR; Sandilands A; Hutcheson AM; Carter JM; Quinlan RA
    Ophthalmic Res; 1996; 28 Suppl 1():58-61. PubMed ID: 8727967
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stress-induced fractal rearrangement of the endothelial cell cytoskeleton causes apoptosis.
    DeMeester SL; Cobb JP; Hotchkiss RS; Osborne DF; Karl IE; Tinsley KW; Buchman TG
    Surgery; 1998 Aug; 124(2):362-71. PubMed ID: 9706160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells.
    Maddala R; Reddy VN; Epstein DL; Rao V
    Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantitative estimation of F-actin in single growth cones.
    Schindelholz B; Reber BF
    Methods; 1999 Aug; 18(4):487-92. PubMed ID: 10491279
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The interrelationship of lens anatomy and optical quality. II. Primate lenses.
    Kuszak JR; Peterson KL; Sivak JG; Herbert KL
    Exp Eye Res; 1994 Nov; 59(5):521-35. PubMed ID: 9492754
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium.
    Kronlage C; Schäfer-Herte M; Böning D; Oberleithner H; Fels J
    Biophys J; 2015 Aug; 109(4):687-98. PubMed ID: 26287621
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of actin dynamics is critical for endothelial barrier functions.
    Waschke J; Curry FE; Adamson RH; Drenckhahn D
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1296-305. PubMed ID: 15528228
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The cortical actin cytoskeleton of lactotropes as an intracellular target for the control of prolactin secretion.
    Carbajal ME; Vitale ML
    Endocrinology; 1997 Dec; 138(12):5374-84. PubMed ID: 9389523
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lens fiber cell elongation and differentiation is associated with a robust increase in myosin light chain phosphorylation in the developing mouse.
    Maddala R; Skiba N; Vasantha Rao P
    Differentiation; 2007 Oct; 75(8):713-25. PubMed ID: 17459090
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells.
    Sontag JM; Aunis D; Bader MF
    Eur J Cell Biol; 1988 Jun; 46(2):316-26. PubMed ID: 2844537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.