BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20730867)

  • 81. Assembly and characterisation of a multi-component cytoskeletal gel from adrenal medulla.
    Cheek TR; Hesketh JE; Richards RC; Burgoyne RD
    Biochim Biophys Acta; 1986 Jul; 887(2):164-72. PubMed ID: 3719007
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Identifying the role of specific motifs in the lens fiber cell specific intermediate filament phakosin.
    Pittenger JT; Hess JF; Fitzgerald PG
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5132-41. PubMed ID: 17962466
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Intermediate filaments regulate tissue size and stiffness in the murine lens.
    Fudge DS; McCuaig JV; Van Stralen S; Hess JF; Wang H; Mathias RT; FitzGerald PG
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3860-7. PubMed ID: 21345981
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparative study of actin filament patterns in lens epithelial cells. Are these determined by the mechanisms of lens accommodation?
    Rafferty NS; Scholz DL
    Curr Eye Res; 1989 Jun; 8(6):569-79. PubMed ID: 2743796
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Endothelins are extracellular signals modulating cytoskeletal actin organization in rat cultured astrocytes.
    Koyama Y; Baba A
    Neuroscience; 1994 Aug; 61(4):1007-16. PubMed ID: 7838370
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts.
    Entcheva E; Bien H
    Integr Biol (Camb); 2009 Feb; 1(2):212-9. PubMed ID: 20023805
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Immunohistochemical study of the cytoskeleton of osteoblasts in the rat calvaria. Intermediate filaments and microfilaments as demonstrated by detergent perfusion.
    Watanabe H; Miake K; Sasaki J
    Acta Anat (Basel); 1993; 147(1):14-23. PubMed ID: 8337922
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A cytoskeletal demolition worker: myosin II acts as an actin depolymerization agent.
    Haviv L; Gillo D; Backouche F; Bernheim-Groswasser A
    J Mol Biol; 2008 Jan; 375(2):325-30. PubMed ID: 18021803
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Intermediate filament cytoskeletal proteins associated with bovine lens native membrane fractions.
    Fleschner CR
    Curr Eye Res; 1998 Apr; 17(4):409-18. PubMed ID: 9561833
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cytochalasin prevents cell elongation and increases potassium efflux from embryonic lens epithelial cells: implications for the mechanism of lens fiber cell elongation.
    Beebe DC; Cerrelli S
    Lens Eye Toxic Res; 1989; 6(4):589-601. PubMed ID: 2487272
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The state of the actin cytoskeleton determines its association with gephyrin: role of ena/VASP family members.
    Bausen M; Fuhrmann JC; Betz H; O'sullivan GA
    Mol Cell Neurosci; 2006 Feb; 31(2):376-86. PubMed ID: 16376568
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Functions of the intermediate filament cytoskeleton in the eye lens.
    Song S; Landsbury A; Dahm R; Liu Y; Zhang Q; Quinlan RA
    J Clin Invest; 2009 Jul; 119(7):1837-48. PubMed ID: 19587458
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Involvement of the actin cytoskeleton in the regulation of serotonin transporter (SET) activity: possible mechanism underlying SET regulation by protein kinase C.
    Sakai N; Kodama N; Ohmori S; Sasaki K; Saito N
    Neurochem Int; 2000 Jun; 36(7):567-79. PubMed ID: 10771115
    [TBL] [Abstract][Full Text] [Related]  

  • 94. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response.
    Tseng Y; Kole TP; Lee JS; Fedorov E; Almo SC; Schafer BW; Wirtz D
    Biochem Biophys Res Commun; 2005 Aug; 334(1):183-92. PubMed ID: 15992772
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Actin and myosin contribute to mammalian mitochondrial DNA maintenance.
    Reyes A; He J; Mao CC; Bailey LJ; Di Re M; Sembongi H; Kazak L; Dzionek K; Holmes JB; Cluett TJ; Harbour ME; Fearnley IM; Crouch RJ; Conti MA; Adelstein RS; Walker JE; Holt IJ
    Nucleic Acids Res; 2011 Jul; 39(12):5098-108. PubMed ID: 21398640
    [TBL] [Abstract][Full Text] [Related]  

  • 96. EphA2 and Ephrin-A5 Guide Eye Lens Suture Alignment and Influence Whole Lens Resilience.
    Cheng C
    Invest Ophthalmol Vis Sci; 2021 Dec; 62(15):3. PubMed ID: 34854885
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Molecular tension microscopy of the LINC complex in live cells.
    Sipieter F; Laurent L; Girard PP; Borghi N
    STAR Protoc; 2022 Sep; 3(3):101538. PubMed ID: 35841591
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis.
    Blatt MR; Wessells NK; Briggs WR
    Planta; 1980 Jan; 147(4):363-75. PubMed ID: 24311088
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Spatially Resolved Proteomics Reveals Lens Suture-Related Cell-Cell Junctional Protein Distributions.
    Wang Z; Gletten RB; Schey KL
    Invest Ophthalmol Vis Sci; 2023 Aug; 64(11):28. PubMed ID: 37603353
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Changes to Zonular Tension Alters the Subcellular Distribution of AQP5 in Regions of Influx and Efflux of Water in the Rat Lens.
    Petrova RS; Bavana N; Zhao R; Schey KL; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2020 Sep; 61(11):36. PubMed ID: 32945844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.