These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 20731378)
21. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? C OA; Caballero Á; Morales J Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220 [TBL] [Abstract][Full Text] [Related]
22. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313 [TBL] [Abstract][Full Text] [Related]
23. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure. Zhu G; Yi Y; Han Z; Wang K; Wu X Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269 [TBL] [Abstract][Full Text] [Related]
24. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
25. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743 [TBL] [Abstract][Full Text] [Related]
26. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. Kosynkin DV; Lu W; Sinitskii A; Pera G; Sun Z; Tour JM ACS Nano; 2011 Feb; 5(2):968-74. PubMed ID: 21204566 [TBL] [Abstract][Full Text] [Related]
27. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Hirsch A Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752 [No Abstract] [Full Text] [Related]
28. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. Chang K; Chen W ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610 [TBL] [Abstract][Full Text] [Related]
29. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons. He L; Lu JQ; Jiang H Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297 [No Abstract] [Full Text] [Related]
30. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS Small; 2006 May; 2(5):667-76. PubMed ID: 17193105 [TBL] [Abstract][Full Text] [Related]
31. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. Kim JG; Nam SH; Lee SH; Choi SM; Kim WB ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871 [TBL] [Abstract][Full Text] [Related]
32. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes. Deng QM; Zhao L; Luo YH; Zhang M; Zhao LX; Zhao Y Nanoscale; 2011 Nov; 3(11):4824-9. PubMed ID: 21997243 [TBL] [Abstract][Full Text] [Related]
33. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Chen D; Ji G; Ding B; Ma Y; Qu B; Chen W; Lee JY Nanoscale; 2013 Sep; 5(17):7890-6. PubMed ID: 23851576 [TBL] [Abstract][Full Text] [Related]
34. Platelet graphite nanofibers for electrochemical sensing and biosensing: the influence of graphene sheet orientation. Ambrosi A; Sasaki T; Pumera M Chem Asian J; 2010 Feb; 5(2):266-71. PubMed ID: 20014003 [TBL] [Abstract][Full Text] [Related]
35. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid. Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495 [TBL] [Abstract][Full Text] [Related]
37. Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries. Baibarac M; Lira-Cantú M; Oró-Solé J; Casañ-Pastor N; Gomez-Romero P Small; 2006 Aug; 2(8-9):1075-82. PubMed ID: 17193171 [TBL] [Abstract][Full Text] [Related]
38. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. Rodríguez-Manzo JA; Cretu O; Banhart F ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of nitrogen-doped graphene films for lithium battery application. Reddy AL; Srivastava A; Gowda SR; Gullapalli H; Dubey M; Ajayan PM ACS Nano; 2010 Nov; 4(11):6337-42. PubMed ID: 20931996 [TBL] [Abstract][Full Text] [Related]
40. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. Kang HS J Am Chem Soc; 2005 Jul; 127(27):9839-43. PubMed ID: 15998088 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]